

hgvs

hgvs is a Python package to parse, format, validate, normalize, and
map biological sequence variants according to recommendations of the
Human Genome Variation Society. Documentation at
https://hgvs.readthedocs.io/

Source [https://github.com/biocommons/hgvs] | Documentation [http://hgvs.readthedocs.org/] | Discuss [https://groups.google.com/forum/#!forum/hgvs-discuss] | Issues [https://github.com/biocommons/hgvs/issues]

Contents

	Introduction
	Features of the hgvs Package

	Related tools

	Support

	Links

	References

	Quick Start
	Install hgvs

	Start hgvs-shell

	Parse the genomic variant

	Validating and Normalizing Variants

	Projecting variants between sequences

	Installing hgvs
	Supported Platforms

	Install Prerequisites

	Use a virtual environment

	Installing hgvs from PyPI (preferred)

	Installing hgvs from source (for developers)

	Installing SeqRepo (optional)

	Local Installation of UTA (optional)

	Test your installation

	Package Versioning

	Key Concepts
	Reference Sequence Types

	Variant Object Representation

	Variant Mapping Tools

	External Data Sources

	Examples
	Creating a SequenceVariant from scratch

	Manuscript Example

	Automated liftover of NM_001261456.1:c.1762A>G (rs509749) to NM_001261457.1 via GRCh37

	Manual liftover of NM_001261456.1:c.1762A>G (rs509749) to NM_001261457.1 via GRCh37

	Using hgvs

	Reference Manual
	Grammar

	Modules

	Privacy Issues
	What’s not done

	Data Provider Queries

	Information about current connections

	Historical connection information

	Contributing
	Highlights

	A Quick Contribution Example

	Using a local/alternative UTA instance

	Get Cozy with make

	Code Style

	Release Process

	Getting Help
	hgvs-discuss Mailing List/Group

	Gitter Channel

	Bug Reports

	Frequently Asked Questions
	Alignments for my transcript are not available. What can I do?

	Why do I get different results on the UCSC browser?

	Why do I get different results with Mutalyzer?

	Change Log
	1.4 Series

	1.3 Series

	1.2 Series

	1.1 Series

	1.0 Series

	0.4 Series

	0.3 Series

	0.2 Series

	0.1 Series

	0.0 Series

	License

Indices and tables

	Index

	Module Index

	Search Page

Introduction

Genome, transcript, and protein sequence variants are typically
reported using the variation nomenclature (“varnomen”)
recommendations [http://varnomen.hgvs.org/] provided by the Human
Genome Variation Society (HGVS) [http://www.hgvs.org/] (Taschner
and den Dunnen, 2011 [http://www.ncbi.nlm.nih.gov/pubmed/21309030]).
Most variants are deceptively simple looking, such as
NM_021960.4:c.740C>T. In reality, the varnomen standard provides for
much more complex concepts and representations.

As high-throughput sequencing becomes commonplace in the investigation
and diagnosis of disease, it is essential that communicating variants
from sequencing projects to the scientific community and from
diagnostic laboratories to health care providers is easy and
accurate. The HGVS mutation nomenclature recommendations⁠ are generally
accepted for the communication of sequence variation: they are widely
endorsed by professional organizations, mandated by numerous journals,
and the prevalent representation used by databases and interactive
scientific software tools. The guidelines – originally devised to
standardize the representation of variants discovered before the
advent of high-throughput sequencing – are now approved by the HGVS
and continue to evolve under the auspices of the Human Variome
Project. Unfortunately, the complexity of biological phenomena and the
breadth of the varnomen standard makes it difficult to implement the
standard in software, which in turn makes using the standard in
high-throughput analyses difficult.

This package, hgvs, is an easy-to-use Python library for parsing,
representing, formatting, and mapping variants between genome, transcript,
and protein sequences. The current implementation handles most (but not
all) of the varnomen standard for precisely defined sequence variants.
The intent is to centralize the subset of HGVS variant manipulation that
is routinely used in modern, high-throughput sequencing analysis.

Features of the hgvs Package

	Convenient object representation. Manipulate variants
conceptually rather than by modifying text strings. Classes model
HGVS concepts such as Interval,
intronic offsets (in BaseOffsetPosition), uncertainty, and types of
variation (hgvs.edit).

	A grammar-based parser. hgvs uses a formal grammar to parse HGVS variants rather than string
partitioning or regular expression pattern matching. This makes
parsing easier to understand, extend, and validate.

	Simple variant formatting. Object representations of variants
may be turned into HGVS strings simply by printing or “stringifying”
them.

	Robust variant mapping. The package includes tools to map variants between
genome, transcript, and protein sequences (VariantMapper and to perform liftover between
two transcript via a common reference (Projector). The hgvs mapper is specifically
designed to reliably handl of regions reference-transcript indel
discrepancy that are not covered by other tools.

	Additional variant validation. The package includes tools to
validate variants, separate from syntactic validation provided by
the grammar.

	Extensible data sources. Mapping and sequence data come from
UTA [https://github.com/biocommons/uta/] by default, but the package includes a well-defined service
interface that enables alternative data sources.

	Extensive automated tests. We run extensive automated tests
consisting of all supported variant types on many genes for every
single commit to the source code repository. Test results are
displayed publicly and immediately.

Note

Some HGVS recommendations are intentionally absent. This
package is primarily concerned with the subset of the VarNomen [http://varnomen.hgvs.org/]
recommendations that are relevant for high-throughput
sequencing. See issues [https://github.com/biocommons/hgvs/issues] for a full set of bugs and feature
requests.

Related tools

	Mutalyzer [http://www.humgen.nl/mutalyzer.html] provides a web
interface to variant validation and mapping.

	Counsyl hgvs package [https://github.com/counsyl/hgvs] provides
functionality conceptually similar to that of the Invitae hgvs
package.

Support

See the section Getting Help for information about connecting
with the community, asking questions, and filing bug reports
correctly.

Links

	Variation Nomenclature Recommendations [http://varnomen.hgvs.org/]

	Human Genome Variation Society (HGVS) [http://www.hgvs.org/]

	Parsley [https://pypi.python.org/pypi/Parsley], an Python wrapper for the OMeta Parser Expression Grammar (PEG [http://en.wikipedia.org/wiki/Parsing_expression_grammar])

	Universal Transcript Archive (UTA) [https://github.com/biocommons/uta/]

References

	hgvs: A Python package for manipulating sequence variants using HGVS nomenclature: 2018 Update.

	
Wang M, Callenberg KM, Dalgleish R, Fedtsov A, Fox N, Freeman PJ, Jacobs KB, Kaleta P, McMurry AJ, Prlić A, Rajaraman V, Hart RK

Human Mutation. 2018

https://www.ncbi.nlm.nih.gov/pubmed/30129167

	A Python package for parsing, validating, mapping and formatting sequence variants using HGVS nomenclature.

	
Hart RK, Rico R, Hare E, Garcia J, Westbrook J, Fusaro VA

Bioinformatics. 31(2):268-70 (2014).

https://www.ncbi.nlm.nih.gov/pubmed/25273102

	Describing structural changes by extending HGVS sequence variation nomenclature.

	
Taschner, P. E. M., & den Dunnen, J. T.

Human Mutation, 32(5), 507–11. (2011).

http://www.ncbi.nlm.nih.gov/pubmed/21309030

	A formalized description of the standard human variant nomenclature in Extended Backus-Naur Form.

	
Laros, J. F. J., Blavier, A., den Dunnen, J. T., & Taschner, P. E. M.

BMC Bioinformatics, 12 Suppl 4(Suppl 4), S5. (2011).

http://www.ncbi.nlm.nih.gov/pubmed/21992071

Quick Start

This tutorial provides a comprehensive example of how to use the HGVS
package. Specifically, we’ll:

	install hgvs

	parse a genomic variant

	project the genomic variant to all transcripts

	infer the amino acid changes for coding transcripts

We’ll use rs397509113 [https://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=397509113]
in BRCA1. This variant is coincident with an exon in 3 coding
transcripts, an intron in 2 other coding transcripts, and a non-coding
transcript.

	transcript (c.)

	protein (p.)

	comment

	NM_007294.3:c.3844del

	NP_009225.1:p.(Glu1282AsnfsTer25)

	

	NM_007297.3:c.3703del

	NP_009228.2:p.(Glu1235AsnfsTer25)

	

	NM_007300.3:c.3844del

	NP_009231.2:p.(Glu1282AsnfsTer25)

	

	NM_007298.3:c.788-655del

	NP_009229.2:p.?

	intronic variant

	NM_007299.3:c.788-655del

	NP_009230.2:p.?

	intronic variant

	NR_027676.1:n.3980del

	non-coding

	non-coding transcript

Install hgvs

For this demo, you’ll obviously need hgvs. In a reasonably modern
environment, the following should suffice:

$ pip install hgvs

More detailed installation instructions are in Installing hgvs.

Start hgvs-shell

The hgvs package includes an executable called hgvs-shell,
which sets up hgvs for you. On the command line, type:

$ hgvs-shell

This is approximately the same thing as:

$ IPython
>>> from hgvs.easy import *

hgvs.easy connects to data sources and initializes commonly used
objects that provide most functionality.

Note

Variant validation, normalization, and projection require
access to external data, specifically exon structures,
transcript alignments, and protein accessions. Right now,
the only source of this data is via the UTA sister projects.
When you import hgvs.easy, you will connect to
publicly available data sources. If you want more
information on the architecture of hgvs and UTA, see
Introduction. See Installing hgvs for information about
installing data sources locally for speed and privacy.

Parse the genomic variant

In the hgvs-shell, do:

>>> var_g = parse("NC_000017.11:g.43091687delC")

Note

All functionality in hgvs is provided by Python
classes. hgvs.easy exposes common methods with
functional forms also, which are used in this quick start
guide. For example, parse(...) above actually calls
`parser.parse(...), where parser is an instance of
the hgvs.parser.Parser class.

Parsing a variant results in objects that represent the variant. A
SequenceVariant object is comprised of an accession (ac), an HGVS
sequence type (c,g,m,n,r,p), and 0 or more specific sequence
changes (posedit – a POSition and EDIt).:

>>> var_g
SequenceVariant(ac=NC_000017.11, type=g, posedit=43091687del, gene=None)

The posedit is itself an object of the hgvs.posedit.PosEdit class:

>>> var_g.posedit
PosEdit(pos=43091687, edit=del, uncertain=False)

The pos (position) and edit attributes are also objects that
can represent intervals and more complex edit operations like indels.
The uncertain flag enables representation of HGVS uncertainty
(typically with parentheses around the uncertain
component). “stringifying” a variant regenerates an HGVS variant:

>>> str(var_g)
'NC_000017.11:g.43091687del'

>>> "This is a variant: {v}".format(v=var_g)
'This is a variant: NC_000017.11:g.43091687del'

And, in Python 3, stringification works in f-strings, like so:

> >> f"{var_g}"
'NC_000017.11:g.43091687del'

Validating and Normalizing Variants

hgvs provides functionality to validate and normalize variants:

>>> normalize(var_g)
SequenceVariant(ac=NC_000017.11, type=g, posedit=43091688del, gene=None)

>>> validate(var_g)
True

Projecting variants between sequences

When two sequences have alignments available in , a variant may be
“projected” from one sequence to the other. hgvs supports
projecting variants

	from g to c, n

	from c to g, n, p

	from n to c, g

The hgvs.assemblymapper.AssemblyMapper class provides a
high-level interface to variant projection. hgvs.easy
initializes AssemblyMapper instances for GRCh37 and GRCh37 as am37
and am38 respectively. For example:

>>> transcripts = am38.relevant_transcripts(var_g)
>>> sorted(transcripts)
['NM_007294.3', 'NM_007297.3', 'NM_007298.3', 'NM_007299.3', 'NM_007300.3', 'NR_027676.1']

We can now project the genomic variant, var_g, to each of these
transcripts using the g_to_t function, and the transcript variant
to a protein sequnce using the t_to_p function.

>>> for ac in get_relevant_transcripts(var_g):
... var_t = g_to_t(var_g, ac)
... var_p = t_to_p(var_t)
... print("-> " + str(var_t) + " (" + str(var_p) + ") ")
...
-> NM_007294.3:c.3844del (NP_009225.1:p.(Glu1282AsnfsTer25))
-> NM_007297.3:c.3703del (NP_009228.2:p.(Glu1235AsnfsTer25))
-> NM_007298.3:c.788-655del (NP_009229.2:p.?)
-> NM_007299.3:c.788-655del (NP_009230.2:p.?)
-> NM_007300.3:c.3844del (NP_009231.2:p.(Glu1282AsnfsTer25))
-> NR_027676.1:n.3980del (non-coding)

In hgvs, the t type can be either c or n. Only
variants on coding sequences (c.) can be projected to a protein
sequence. As a special case, t_to_p returns “non-coding” when the
input variant is on a non-coding sequence.

Installing hgvs

Supported Platforms

hgvs is developed primarily on Ubuntu systems and has been reported
to work on Mac. Other platforms and dependency versions are expected
to work but have not been tested. Reports of successful operation on
other platforms (and patches to enable this) are appreciated.
Python >=3.5 is now required.

Install Prerequisites

hgvs currently requires PostgreSQL client libraries. On Ubuntu,
try:

apt-get install libpq-dev

On a Mac with homebrew:

brew install postgresql

Use a virtual environment

Users are encouraged to use a virtual environment. The most basic
method for this is:

$ python3 -m venv venv
$ source venv/bin/activate

Your shell prompt will change upon activation.

See this tutorial [https://realpython.com/python-virtual-environments-a-primer/] for
more information about virtual environments.

Installing hgvs from PyPI (preferred)

Install hgvs via pip:

$ pip install hgvs

hgvs will install dependencies automatically.

Installing hgvs from source (for developers)

For the project at https://github.com/biocommons/hgvs.

Fetch the source code:

$ git clone https://github.com/<your github username>/hgvs

Then:

$ source venv/bin/activate # replace with path to your virtual env
$ cd hgvs
$ make develop

Installing SeqRepo (optional)

seqrepo [https://github.com/biocommons/biocommons.seqrepo]
provides an easy and efficient mechanism to maintain a local
sequence database.

Install seqrepo:

$ pip install biocommons.seqrepo

Then, choose a file path that has at least 10GB of space available.
By default, seqrepo will use /usr/local/share/serepo/. Make that
directory:

$ mkdir /usr/local/share/seqrepo

Download an instance of the human sequence set:

$ seqrepo -r /usr/local/share/seqrepo pull

You can skip the -r if you use the default
/usr/local/share/seqrepo/. This step will take 10-30 minutes, or
more for slow connections.

As with UTA, you tell hgvs to use this feature via an environment
variable:

$ export HGVS_SEQREPO_DIR=/usr/local/share/seqrepo/20160906

Local Installation of UTA (optional)

The easiest way to install UTA locally is to use the docker image:

$ docker run -d –name uta_20170117 -p 15032:5432 biocommons/uta:uta_20170117

If you do this, then set:

$ export UTA_DB_URL=postgresql://anonymous@localhost:15032/uta/uta_20170117

If you don’t set this variable, hgvs will use the remote uta
database.

Test your installation

hgvs installs hgvs-shell, a command line tool based on
IPython. It’s a convenience utility that imports and initializes
frequently-used components. Try this:

(default-2.7) snafu$ hgvs-shell
INFO:root:Starting hgvs-shell 1.0.0a1
INFO:biocommons.seqrepo:biocommons.seqrepo 0.3.1
INFO:hgvs.dataproviders.seqfetcher:Using SeqRepo(/usr/local/share/seqrepo/master) sequence fetching
INFO:hgvs.dataproviders.uta:connected to postgresql://anonymous:anonymous@localhost/uta_dev/uta_20170117...

In [1]: v = hp.parse_hgvs_variant("NM_033089.6:c.571C>G")

In [2]: am37.c_to_g(v)
INFO:biocommons.seqrepo.fastadir.fastadir:Opening for reading: /usr/.../1472015601.985206.fa.bgz
Out[2]: SequenceVariant(ac=NC_000020.10, type=g, posedit=278801C>G)

In [3]: am38.c_to_g(v)
INFO:biocommons.seqrepo.fastadir.fastadir:Opening for reading: /usr/.../1472026864.4364622.fa.bgz
Out[3]: SequenceVariant(ac=NC_000020.11, type=g, posedit=298157C>G)

Package Versioning

hgvs uses semantic versioning [http://semver.org/]. For a version x.y.z,
incrementing x, y, or z denotes backward-incompatible changes, feature
additions, and bug fixes respectively.

Version numbers for released code come directly from the repository
tag. Therefore, PyPI version 0.1.2 corresponds exactly to the
repository commit tagged as 0.1.2.

Users (i.e., non-developers) are encouraged to use the PyPI releases
and to specify versions to stay within minor releases for API
stability. For example, a line like:

hgvs>=1.0,<2

in setup.py or requirements.txt indicates that version 1.0 (any patch
level) is required, and that future 1.x-series releases are
acceptable.

Key Concepts

This section is intended for all users and provides an understanding
of key concepts and components of the hgvs package.

Reference Sequence Types

The HGVS Recommendations provide for six types of reference sequences.
Because the type influences the syntax and object representation in
the hgvs package, it is important to understand these distinctions. A
summary of the types follows:

	Type

	Sequence

	Coordinates

	Datum

	Example

	
	

	DNA

	Continuous

	Sequence start

	NC_000007.13:g.21582936G>A

	
	

	DNA

	Continuous

	Sequence start

	NC_012920.1:m.8993T>C

	
	

	DNA

	Base-Offset

	Translation start

	NM_001277115.1:c.351+115T>C

	
	

	DNA

	Base-Offset

	Sequence start

	NM_000518.4:n.76_92del

	
	

	RNA

	Base-Offset

	Sequence start

	NR_111984.1:r.44g>a

	
	

	AA

	Continuous

	Sequence start

	NP_001264044.1:p.(Ala25Thr)

Datum refers to the definition for position 1 in the
sequence. “Sequence start” means the first position of the
sequence. “Translation start” means the position of the ATG that
typically starts translation (only for coding transcripts).

Continuous coordinates are the familiar ordinal counting (1, 2, 3,
…). There are no breaks for intervening sequence.

Base-Offset coordinates use a base position, which is an index in the
specified sequence, and an optional offset from that base position.
Non-zero offsets refer to non-coding sequence, such as 5’ UTR, 3’ UTR,
or intronic position. Examples are 22 (with a zero offset), 22+6, and
*6. There is no zero position; that is, the positions around the
translation start are …, -3, -2, -1, 1, 2, 3, … .

Variant Object Representation

HGVS variants are represented using classes that represent elemental
concepts of an HGVS sequence variant. Each of the objects contains
references to data that define the objects; those data may be Python
built in types such as integers (int) or strings (unicode), or they
may be other classes in the hgvs package.

For example, a variant parsed like this:

>>> import hgvs.parser
>>> hgvsparser = hgvs.parser.Parser()
>>> var = hgvsparser.parse_hgvs_variant('NM_001197320.1:c.281C>T')

will generate an object tree like the following:

[image: _images/object-diagram.svg]A typical object tree created by parsing a variant. Verticies show
the property name with property type in parentheses.

For that variant, the properties may be obtained easily by dot lookup:

>>> var.ac
'NM_001197320.1'
>>> var.type
'c'
>>> var.posedit
PosEdit(pos=281, edit=C>T, uncertain=False)
>>> var.posedit.pos
BaseOffsetInterval(start=281, end=281, uncertain=False)
>>> var.posedit.pos.start, var.posedit.pos.end
(BaseOffsetPosition(base=281, offset=0, datum=Datum.CDS_START, uncertain=False),
 BaseOffsetPosition(base=281, offset=0, datum=Datum.CDS_START, uncertain=False))
>>> var.posedit.edit
NARefAlt(ref='C', alt='T', uncertain=False)

The object representation makes it easy to modify variants
conceptually rather than textually. For example, if the previous
variant was inferred rather than sequenced, we might wish to declare
that it is uncertain, which then causes the stringified version to
contain the edit in parentheses:

>>> var.posedit.uncertain = True
>>> str(var)
'NM_001197320.1:c.(281C>T)'

Variant Mapping Tools

Variant mapping is supported by several modules. Most users will
likely be content with hgvs.variant.AssemblyMapper. For
completeness, it may help to understand how all of the mappers relate
to each other.

hgvs.alignmentmapper.AlignmentMapper

The AlignmentMapper uses CIGAR to map
pairs of exon segments (typically exons in the transcript and
genomic sequences). It is must be instantiated with a transcript
accession, reference accession, and alignment method, and
provides functions to map sequence intervals (not variants)
for the specified alignment. It is also accommodates strand
orientation.

hgvs.variantmapper.VariantMapper

The VariantMapper uses
hgvs.alignmentmapper.AlignmentMapper to provide g<->r,
r<->c, g<->c, and c->p transformations for
SequenceVariant objects. As with the AlignmentMapper,
it must be instantiated with an appropriate transcript,
reference, and alignment method.

hgvs.assemblymapper.AssemblyMapper

VariantMapper requires that the caller provide a transcript
accession and an appropriate reference sequence, which in turn
requires knowing the correct reference sequence. The alignment
method is also required. While the VariantMapper interface
serves the general case of mapping to any sequence (including
patch sequences), it is burdensome for the most common case.
AssemblyMapper wraps VariantMapper to provide identical
mapping functionality that is tailored for mapping between a
transcript and a primary assembly.

hgvs.projector.Projector

Projector maps variants between transcripts using a common
reference and alignment method. For example, this tool can
transfer a variant from one RefSeq to another, or even from an
Ensembl transcript to a RefSeq.

[image: _images/mapping-tools.svg]Mapping tools available in the hgvs package. r1 is a genomic
reference (e.g., NC_000014.8). t1 and t2 are transcripts (e.g.,
NM_000551.2). p1 is a protein sequence (e.g., NP_012345.6).

External Data Sources

Variant mapping and validation requires access to external data,
specifically exon structures, transcript alignments, accessions, and
sequences. In order to isolate the hgvs package from the myriad
choices and tradeoffs, these data are provided through an
implementation of the (abstract) Data Provider Interface
(hgvs.dataproviders.interface). Currently, the only concrete
implementation of the data provider interface uses UTA [https://github.com/biocommons/uta/], an archive
of transcripts, transcript sequences, and transcript-reference
sequence alignments.

Invitae provides a public UTA instance at uta.biocommons.org:5432
(PostgreSQL). hgvs uses this public UTA instance by default, so
most users won’t need to worry about this aspect of the hgvs package.
However, a docker image of UTA is also available; see
Installing hgvs for details.

Alternatively, users may implement their own providers that conform to
the data providers interface. See hgvs.dataproviders.uta for an
example.

Examples

The following examples are derived directly from IPython notebooks in the
hgvs source code examples directory [https://github.com/biocommons/hgvs/tree/master/examples].

	Creating a SequenceVariant from scratch
	0. Overview

	1. Make an Interval to define a position of the edit

	2. Make an edit object

	3. Make the variant

	4. Update your variant

	Manuscript Example
	Parse an HGVS string into a Python structure

	Open the UTA public data source for mapping and validation

	Project transcript variant NM_182763.2:c.688+403C>T to GRCh37 primary assembly using splign alignments

	Project genomic variant to a new transcript

	Infer protein changes for these transcript variants

	Format the results by “stringification”

	Validate a variant

	Automated liftover of NM_001261456.1:c.1762A>G (rs509749) to NM_001261457.1 via GRCh37

	Manual liftover of NM_001261456.1:c.1762A>G (rs509749) to NM_001261457.1 via GRCh37

	Using hgvs
	Variant I/O
	Initialize the parser

	Parse a simple variant

	Parsing complex variants

	Formatting variants

	Projecting variants between sequences
	Set up a dataprovider

	Initialize mapper classes

	c_to_g

	g_to_c

	c_to_p

	Projecting in the presence of a genome-transcript gap

	Normalizing variants

	A more complex normalization example

	Validating variants

Creating a SequenceVariant from scratch

0. Overview

A SequenceVariant consists of an accession (a string), a sequence type
(a string), and a PosEdit, like this:

var = hgvs.sequencevariant.SequenceVariant(ac=‘NM_01234.5’, type=‘c’,
posedit=…)

Unsurprisingly, a PosEdit consists of separate position and Edit
objects. A position is generally an Interval, which in turn is comprised
of SimplePosition or BaseOffsetPosition objects. An edit is a subclass
of Edit, which includes classes like NARefAlt for substitutions,
deletions, and insertions) and Dup (for duplications).

Importantly, each of the objects we’re building has a rule in the
parser, which means that you have the tools to serialize and deserialize
(parse) each of the components that we’re about to construct.

1. Make an Interval to define a position of the edit

import hgvs.location
import hgvs.posedit

start = hgvs.location.BaseOffsetPosition(base=200,offset=-6,datum=hgvs.location.Datum.CDS_START)
start, str(start)

(BaseOffsetPosition(base=200, offset=-6, datum=Datum.CDS_START, uncertain=False),
 '200-6')

end = hgvs.location.BaseOffsetPosition(base=22,datum=hgvs.location.Datum.CDS_END)
end, str(end)

(BaseOffsetPosition(base=22, offset=0, datum=Datum.CDS_END, uncertain=False),
 '*22')

iv = hgvs.location.Interval(start=start,end=end)
iv, str(iv)

(Interval(start=200-6, end=*22, uncertain=False), '200-6_*22')

2. Make an edit object

import hgvs.edit, hgvs.posedit

edit = hgvs.edit.NARefAlt(ref='A',alt='T')
edit, str(edit)

(NARefAlt(ref='A', alt='T', uncertain=False), 'A>T')

posedit = hgvs.posedit.PosEdit(pos=iv,edit=edit)
posedit, str(posedit)

(PosEdit(pos=200-6_*22, edit=A>T, uncertain=False), '200-6_*22A>T')

3. Make the variant

import hgvs.sequencevariant

var = hgvs.sequencevariant.SequenceVariant(ac='NM_01234.5', type='c', posedit=posedit)
var, str(var)

(SequenceVariant(ac=NM_01234.5, type=c, posedit=200-6_*22A>T),
 'NM_01234.5:c.200-6_*22A>T')

Important: It is possible to bogus variants with the hgvs package. For
example, the above interval is incompatible with a SNV. See
hgvs.validator.Validator for validation options.

4. Update your variant

The stringification happens on-the-fly. That means that you can update
components of the variant and see the effects immediately.

import copy

var2 = copy.deepcopy(var)
var2.posedit.pos.start.base=456
str(var2)

'NM_01234.5:c.456-6_*22A>T'

var2 = copy.deepcopy(var)
var2.posedit.edit.alt='CT'
str(var2)

'NM_01234.5:c.200-6_*22delinsCT'

var2 = copy.deepcopy(var)
str(var2)

'NM_01234.5:c.200-6_*22A>T'

Manuscript Example

import hgvs
hgvs.__version__

'0.3dev-283858cb6466'

Parse an HGVS string into a Python structure

import hgvs.parser
hp = hgvs.parser.Parser()
var_c1 = hp.parse_hgvs_variant('NM_182763.2:c.688+403C>T')
var_c1, var_c1.posedit.pos.start

(SequenceVariant(ac=NM_182763.2, type=c, posedit=688+403C>T),
 BaseOffsetPosition(base=688, offset=403, datum=1, uncertain=False))

Open the UTA public data source for mapping and validation

import hgvs.dataproviders.uta
hdp = hgvs.dataproviders.uta.connect()

Project transcript variant NM_182763.2:c.688+403C>T to GRCh37 primary assembly using splign alignments

import hgvs.variantmapper
vm = hgvs.variantmapper.AssemblyMapper(
 hdp, assembly_name='GRCh37', alt_aln_method='splign')
var_g = vm.c_to_g(var_c1)
var_g

SequenceVariant(ac=NC_000001.10, type=g, posedit=150550916G>A)

Project genomic variant to a new transcript

vm.relevant_transcripts(var_g)

['NM_182763.2', 'NM_021960.4', 'NM_001197320.1']

var_c2 = vm.g_to_c(var_g,'NM_001197320.1')
var_c2

SequenceVariant(ac=NM_001197320.1, type=c, posedit=281C>T)

Infer protein changes for these transcript variants

var_p1 = vm.c_to_p(var_c1)
var_p2 = vm.c_to_p(var_c2)
var_p1, var_p2

(SequenceVariant(ac=NP_877495.1, type=p, posedit=?),
 SequenceVariant(ac=NP_001184249.1, type=p, posedit=(Ser94Phe)))

Format the results by “stringification”

print("""mapped {var_c1} ({var_p1})
 to {var_c2} ({var_p2})
 via {var_g}""".format(
 var_c1=var_c1, var_p1=var_p1,
 var_c2=var_c2, var_p2=var_p2,
 var_g=var_g))

mapped NM_182763.2:c.688+403C>T (NP_877495.1:p.?)
 to NM_001197320.1:c.281C>T (NP_001184249.1:p.(Ser94Phe))
 via NC_000001.10:g.150550916G>A

Validate a variant

import hgvs.validator
import hgvs.exceptions
vr = hgvs.validator.Validator(hdp=hdp)
try:
 vr.validate(hp.parse_hgvs_variant('NM_001197320.1:c.281C>T'))
 vr.validate(hp.parse_hgvs_variant('NM_001197320.1:c.281A>T'))
except hgvs.exceptions.HGVSError as e:
 print(e)

NM_001197320.1:c.281A>T: Variant reference does not agree with reference sequence

Automated liftover of NM_001261456.1:c.1762A>G (rs509749) to NM_001261457.1 via GRCh37

Automatically project variant from one transcript to another via
common reference.

http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=509749

import hgvs.parser
hgvsparser = hgvs.parser.Parser()
var_c1 = hgvsparser.parse_hgvs_variant('NM_001261456.1:c.1762A>G')

import hgvs.dataproviders.uta
hdp = hgvs.dataproviders.uta.connect()

import hgvs.projector
pj = hgvs.projector.Projector(hdp=hdp,
 alt_ac='NC_000001.10',
 src_ac=var_c1.ac,
 dst_ac='NM_001261457.1')

pj.project_variant_forward(var_c1)

SequenceVariant(ac=NM_001261457.1, type=c, posedit=1534A>G)

Manual liftover of NM_001261456.1:c.1762A>G (rs509749) to NM_001261457.1 via GRCh37

http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=509749

import hgvs.dataproviders.uta
import hgvs.variantmapper
import hgvs.parser

hdp = hgvs.dataproviders.uta.connect()
variantmapper = hgvs.variantmapper.VariantMapper(hdp)
hgvsparser = hgvs.parser.Parser()

var_c1 = hgvsparser.parse_hgvs_variant('NM_001261456.1:c.1762A>G')
var_p1 = variantmapper.c_to_p(var_c1, None)
var_c1, var_p1

(SequenceVariant(ac=NM_001261456.1, type=c, posedit=1762A>G),
 SequenceVariant(ac=MD5_e999a940ca422ec8cab9bc3cc64e0d7d, type=p, posedit=(Met588Val)))

var_g = variantmapper.c_to_g(var_c1,'NC_000001.10')
var_g

SequenceVariant(ac=NC_000001.10, type=g, posedit=160793560A>G)

txs = hdp.get_tx_for_gene('LY9')
txs

[['LY9', 30, 1998, 'ENST00000263285', 'NC_000001.10', 'genebuild'],
 ['LY9', 1, 583, 'ENST00000368039', 'NC_000001.10', 'genebuild'],
 ['LY9', 0, 1648, 'ENST00000392203', 'NC_000001.10', 'genebuild'],
 ['LY9', 0, 1833, 'ENST00000368037', 'NC_000001.10', 'genebuild'],
 ['LY9', 211, 1024, 'ENST00000368035', 'NC_000001.10', 'genebuild'],
 ['LY9', 50, 1616, 'ENST00000341032', 'NC_000001.10', 'genebuild'],
 ['LY9', 170, 1751, 'ENST00000368041', 'NC_000001.10', 'genebuild'],
 ['LY9', 1094, 1907, 'ENST00000368040', 'NC_000001.10', 'genebuild'],
 ['LY9', 114, 2040, 'NM_001261456.1', 'AC_000133.1', 'splign'],
 ['LY9', 114, 2040, 'NM_001261456.1', 'NC_000001.10', 'blat'],
 ['LY9', 114, 2040, 'NM_001261456.1', 'NC_000001.10', 'splign'],
 ['LY9', 114, 2040, 'NM_001261456.1', 'NC_018912.2', 'splign'],
 ['LY9', 114, 696, 'NM_001033667.2', 'AC_000133.1', 'splign'],
 ['LY9', 114, 696, 'NM_001033667.2', 'NC_000001.10', 'blat'],
 ['LY9', 114, 696, 'NM_001033667.2', 'NC_000001.10', 'splign'],
 ['LY9', 114, 696, 'NM_001033667.2', 'NC_018912.2', 'splign'],
 ['LY9', 114, 2082, 'NM_002348.3', 'AC_000133.1', 'splign'],
 ['LY9', 114, 2082, 'NM_002348.3', 'NC_000001.10', 'blat'],
 ['LY9', 114, 2082, 'NM_002348.3', 'NC_000001.10', 'splign'],
 ['LY9', 114, 2082, 'NM_002348.3', 'NC_018912.2', 'splign'],
 ['LY9', 114, 1812, 'NM_001261457.1', 'AC_000133.1', 'splign'],
 ['LY9', 114, 1812, 'NM_001261457.1', 'NC_000001.10', 'blat'],
 ['LY9', 114, 1812, 'NM_001261457.1', 'NC_000001.10', 'splign'],
 ['LY9', 114, 1812, 'NM_001261457.1', 'NC_018912.2', 'splign']]

var_c2 = variantmapper.g_to_c(var_g,'NM_001261457.1',alt_aln_method='splign')
var_p2 = variantmapper.c_to_p(var_c2, None)
var_c2, var_p2

(SequenceVariant(ac=NM_001261457.1, type=c, posedit=1534A>G),
 SequenceVariant(ac=MD5_921ebefe79bff479f4bfa17e133fc084, type=p, posedit=(Met512Val)))

Using hgvs

This notebook demonstrates major features of the hgvs package.

import hgvs
hgvs.__version__

'0.5.0a6.dev3+nf998c16a46b3.d20161012'

Variant I/O

Initialize the parser

You only need to do this once per process
import hgvs.parser
hp = hgvsparser = hgvs.parser.Parser()

Parse a simple variant

v = hp.parse_hgvs_variant("NC_000007.13:g.21726874G>A")

v

SequenceVariant(ac=NC_000007.13, type=g, posedit=21726874G>A)

v.ac, v.type

('NC_000007.13', 'g')

v.posedit

PosEdit(pos=21726874, edit=G>A, uncertain=False)

v.posedit.pos

Interval(start=21726874, end=21726874, uncertain=False)

v.posedit.pos.start

SimplePosition(base=21726874, uncertain=False)

Parsing complex variants

v = hp.parse_hgvs_variant("NM_003777.3:c.13552_*36del57")

v.posedit.pos.start, v.posedit.pos.end

(BaseOffsetPosition(base=13552, offset=0, datum=1, uncertain=False),
 BaseOffsetPosition(base=36, offset=0, datum=2, uncertain=False))

v.posedit.edit

NARefAlt(ref=57, alt=None, uncertain=False)

Formatting variants

All objects may be formatted simply by “stringifying” or printing them
using str, print(), or "".format().

str(v)

'NM_003777.3:c.13552_*36del57'

print(v)

NM_003777.3:c.13552_*36del57

"{v} spans the CDS end".format(v=v)

'NM_003777.3:c.13552_*36del57 spans the CDS end'

Projecting variants between sequences

Set up a dataprovider

Mapping variants requires exon structures, alignments, CDS bounds, and
raw sequence. These are provided by a hgvs.dataprovider instance.
The only dataprovider provided with hgvs uses UTA. You may write your
own by subsclassing hgvs.dataproviders.interface.

import hgvs.dataproviders.uta
hdp = hgvs.dataproviders.uta.connect()

Initialize mapper classes

The VariantMapper class projects variants between two sequence
accessions using alignments from a specified source. In order to use it,
you must know that two sequences are aligned. VariantMapper isn’t
demonstrated here.

AssemblyMapper builds on VariantMapper and handles identifying
appropriate sequences. It is configured for a particular genome
assembly.

import hgvs.variantmapper
#vm = variantmapper = hgvs.variantmapper.VariantMapper(hdp)
am37 = easyvariantmapper = hgvs.variantmapper.AssemblyMapper(hdp, assembly_name='GRCh37')
am38 = easyvariantmapper = hgvs.variantmapper.AssemblyMapper(hdp, assembly_name='GRCh38')

c_to_g

This is the easiest case because there is typically only one alignment
between a transcript and the genome. (Exceptions exist for
pseudoautosomal regions.)

var_c = hp.parse_hgvs_variant("NM_015120.4:c.35G>C")
var_g = am37.c_to_g(var_c)
var_g

am38.c_to_g(var_c)

g_to_c

In order to project a genomic variant onto a transcript, you must tell
the AssemblyMapper which transcript to use.

am37.relevant_transcripts(var_g)

['NM_015120.4']

am37.g_to_c(var_g, "NM_015120.4")

SequenceVariant(ac=NM_015120.4, type=c, posedit=35T>C)

c_to_p

var_p = am37.c_to_p(var_c)
str(var_p)

'NP_055935.4:p.(Leu12Pro)'

var_p.posedit.uncertain = False
str(var_p)

'NP_055935.4:p.Leu12Pro'

Projecting in the presence of a genome-transcript gap

As of Oct 2016, 1033 RefSeq transcripts in 433 genes have gapped
alignments. These gaps require special handlingin order to maintain the
correspondence of positions in an alignment. hgvs uses the precomputed
alignments in UTA to correctly project variants in exons containing
gapped alignments.

This example demonstrates projecting variants in the presence of a gap
in the alignment of NM_015120.4 (ALMS1) with GRCh37 chromosome 2. (The
alignment with GRCh38 is similarly gapped.) Specifically, the adjacent
genomic positions 73613031 and 73613032 correspond to the non-adjacent
CDS positions 35 and 39.

NM_015120.4 c 15 > > 58
NM_015120.4 n 126 > CCGGGCGAGCTGGAGGAGGAGGAG > 169
 ||||||||||| |||||||||| 21=3I20=
NC_000002.11 g 73613021 > CCGGGCGAGCT---GGAGGAGGAG > 73613041
NC_000002.11 g 73613021 < GGCCCGCTCGA---CCTCCTCCTC < 73613041

str(am37.c_to_g(hp.parse_hgvs_variant("NM_015120.4:c.35G>C")))

'NC_000002.11:g.73613031T>C'

str(am37.c_to_g(hp.parse_hgvs_variant("NM_015120.4:c.39G>C")))

'NC_000002.11:g.73613032G>C'

Normalizing variants

In hgvs, normalization means shifting variants 3’ (as requried by the
HGVS nomenclature) as well as rewriting variants. The variant
“NM_001166478.1:c.30_31insT” is in a poly-T run (on the transcript). It
should be shifted 3’ and is better written as dup, as shown below:

 * NC_000006.11:g.49917127dupA
 NC_000006.11 g 49917117 > AGAAAGAAAAATAAAACAAAG > 49917137
 NC_000006.11 g 49917117 < TCTTTCTTTTTATTTTGTTTC < 49917137
 ||||||||||||||||||||| 21=
NM_001166478.1 n 41 < TCTTTCTTTTTATTTTGTTTC < 21 NM_001166478.1:n.35dupT
NM_001166478.1 c 41 < < 21 NM_001166478.1:c.30_31insT

import hgvs.normalizer
hn = hgvs.normalizer.Normalizer(hdp)

v = hp.parse_hgvs_variant("NM_001166478.1:c.30_31insT")
str(hn.normalize(v))

'NM_001166478.1:c.35dupT'

A more complex normalization example

This example is based on https://github.com/biocommons/hgvs/issues/382/.

 NC_000001.11 g 27552104 > CTTCACACGCATCCTGACCTTG > 27552125
 NC_000001.11 g 27552104 < GAAGTGTGCGTAGGACTGGAAC < 27552125
 |||||||||||||||||||||| 22=
NM_001029882.3 n 843 < GAAGTGTGCGTAGGACTGGAAC < 822
NM_001029882.3 c 12 < < -10
 ^^
 NM_001029882.3:c.1_2del
 NM_001029882.3:n.832_833delAT
 NC_000001.11:g.27552114_27552115delAT

am38.c_to_g(hp.parse_hgvs_variant("NM_001029882.3:c.1A>G"))

SequenceVariant(ac=NC_000001.11, type=g, posedit=27552115T>C)

am38.c_to_g(hp.parse_hgvs_variant("NM_001029882.3:c.2T>G"))

SequenceVariant(ac=NC_000001.11, type=g, posedit=27552114A>C)

am38.c_to_g(hp.parse_hgvs_variant("NM_001029882.3:c.1_2del"))

SequenceVariant(ac=NC_000001.11, type=g, posedit=27552114_27552115delAT)

The genomic coordinates for the SNVs at c.1 and c.2 match those for the
del at c.1_2. Good!

Now, notice what happens with c.1_3del, c.1_4del, and c.1_5del:

am38.c_to_g(hp.parse_hgvs_variant("NM_001029882.3:c.1_3del"))

SequenceVariant(ac=NC_000001.11, type=g, posedit=27552114_27552116delATC)

am38.c_to_g(hp.parse_hgvs_variant("NM_001029882.3:c.1_4del"))

SequenceVariant(ac=NC_000001.11, type=g, posedit=27552112_27552115delGCAT)

am38.c_to_g(hp.parse_hgvs_variant("NM_001029882.3:c.1_5del"))

SequenceVariant(ac=NC_000001.11, type=g, posedit=27552112_27552116delGCATC)

Explanation:

On the transcript, c.1_2delAT deletes AT from …AGGATGCG…, resulting in
…AGGGCG…. There’s no ambiguity about what sequence was actually deleted.

c.1_3delATG deletes ATG, resulting in …AGGCG…. Note that you could also
get this result by deleting GAT. This is an example of an indel that is
subject to normalization and hgvs does this.

c.1_4delATGC and 1_5delATGCG have similar behaviors.

Normalization is always 3’ with respect to the reference sequence. So,
after projecting from a - strand transcript to the genome, normalization
will go in the opposite direction to the transcript. It will have
roughly the same effect as being 5’ shifted on the transcript (but
revcomp’d).

For more precise control, see the normalize and
replace_reference options of AssemblyMapper.

Validating variants

hgvs.validator.Validator is a composite of two classes,
hgvs.validator.IntrinsicValidator and
hgvs.validator.ExtrinsicValidator. Intrinsic validation evaluates a
given variant for internal consistency, such as requiring that
insertions specify adjacent positions. Extrinsic validation evaluates a
variant using external data, such as ensuring that the reference
nucleotide in the variant matches that implied by the reference sequence
and position. Validation returns True if successful, and raises an
exception otherwise.

import hgvs.validator
hv = hgvs.validator.Validator(hdp)

hv.validate(hp.parse_hgvs_variant("NM_001166478.1:c.30_31insT"))

True

from hgvs.exceptions import HGVSError

try:
 hv.validate(hp.parse_hgvs_variant("NM_001166478.1:c.30_32insT"))
except HGVSError as e:
 print(e)

insertion length must be 1

Reference Manual

	Grammar
	Grammar Overview
	HGVS Railroad Diagram
	Variants

	Intervals

	Localized Edits

	Positions

	Edits (sequence changes)

	Sequences

	Residues

	Remaining rules

	Modules
	Module Overview

	Top-level module

	Configuration
	hgvs.config

	Variant Object Representation
	hgvs.edit

	hgvs.hgvsposition

	hgvs.location

	hgvs.posedit

	hgvs.sequencevariant

	Parsing and Formatting
	hgvs.parser

	Mapping
	hgvs.assemblymapper

	hgvs.variantmapper

	hgvs.projector

	hgvs.alignmentmapper

	Validation and Normalization
	hgvs.validator

	hgvs.normalizer

	External Data Providers
	hgvs.dataproviders.interface

	hgvs.dataproviders.uta

Grammar

Grammar Overview

Note

This section is being written.

Provide an overview of the grammar rules
Also consider a document link to the grammar itself

HGVS Railroad Diagram

Generated from hgvs (https://github.com/biocommons/hgvs)

1b1f788ef473+ default tip

See the source code for the OMeta-based grammar

Variants

[image: _images/hgvs_variant.svg]

[image: _images/g_variant.svg]

[image: _images/m_variant.svg]

[image: _images/c_variant.svg]

[image: _images/n_variant.svg]

[image: _images/r_variant.svg]

[image: _images/p_variant.svg]

Intervals

[image: _images/c_interval.svg]

[image: _images/def_c_interval.svg]

[image: _images/def_g_interval.svg]

[image: _images/def_m_interval.svg]

[image: _images/def_n_interval.svg]

[image: _images/def_p_interval.svg]

[image: _images/def_r_interval.svg]

[image: _images/g_interval.svg]

[image: _images/m_interval.svg]

[image: _images/n_interval.svg]

[image: _images/p_interval.svg]

[image: _images/r_interval.svg]

Localized Edits

[image: _images/c_posedit.svg]

[image: _images/c_typed_posedit.svg]

[image: _images/g_posedit.svg]

[image: _images/g_typed_posedit.svg]

[image: _images/m_posedit.svg]

[image: _images/m_typed_posedit.svg]

[image: _images/n_posedit.svg]

[image: _images/n_typed_posedit.svg]

[image: _images/p_posedit_special.svg]

[image: _images/p_posedit.svg]

[image: _images/p_typed_posedit.svg]

[image: _images/r_posedit.svg]

[image: _images/r_typed_posedit.svg]

Positions

[image: _images/hgvs_position.svg]

[image: _images/c_hgvs_position.svg]

[image: _images/c_pos.svg]

[image: _images/def_c_pos.svg]

[image: _images/g_hgvs_position.svg]

[image: _images/g_pos.svg]

[image: _images/def_g_pos.svg]

[image: _images/m_hgvs_position.svg]

[image: _images/m_pos.svg]

[image: _images/def_m_pos.svg]

[image: _images/n_hgvs_position.svg]

[image: _images/n_pos.svg]

[image: _images/def_n_pos.svg]

[image: _images/p_hgvs_position.svg]

[image: _images/p_pos.svg]

[image: _images/def_p_pos.svg]

[image: _images/r_hgvs_position.svg]

[image: _images/r_pos.svg]

[image: _images/def_r_pos.svg]

Edits (sequence changes)

[image: _images/dna_copy.svg]

[image: _images/dna_delins.svg]

[image: _images/dna_del.svg]

[image: _images/dna_dup.svg]

[image: _images/dna_edit_mu.svg]

[image: _images/dna_edit.svg]

[image: _images/dna_ident.svg]

[image: _images/dna_ins.svg]

[image: _images/dna_inv.svg]

[image: _images/dna_subst.svg]

[image: _images/pro_delins.svg]

[image: _images/pro_del.svg]

[image: _images/pro_dup.svg]

[image: _images/pro_edit_mu.svg]

[image: _images/pro_edit.svg]

[image: _images/pro_ident.svg]

[image: _images/pro_ins.svg]

[image: _images/pro_subst.svg]

[image: _images/rna_delins.svg]

[image: _images/rna_del.svg]

[image: _images/rna_dup.svg]

[image: _images/rna_edit_mu.svg]

[image: _images/rna_edit.svg]

[image: _images/rna_ident.svg]

[image: _images/rna_ins.svg]

[image: _images/rna_inv.svg]

[image: _images/rna_subst.svg]

Sequences

[image: _images/aa13_seq.svg]

[image: _images/aa1_seq.svg]

[image: _images/aa3_seq.svg]

[image: _images/aat13_seq.svg]

[image: _images/aat1_seq.svg]

[image: _images/aat3_seq.svg]

[image: _images/dna_seq.svg]

[image: _images/rna_seq.svg]

Residues

[image: _images/aa13_ext.svg]

[image: _images/aa13_fs.svg]

[image: _images/aa13.svg]

[image: _images/aa1.svg]

[image: _images/aa3.svg]

[image: _images/aat13.svg]

[image: _images/aat1.svg]

[image: _images/aat3.svg]

[image: _images/dna_con.svg]

[image: _images/dna_iupac.svg]

[image: _images/dna.svg]

[image: _images/rna_con.svg]

[image: _images/rna_iupac.svg]

[image: _images/rna.svg]

Remaining rules

[image: _images/accn.svg]

[image: _images/base.svg]

[image: _images/ext.svg]

[image: _images/fsext_offset.svg]

[image: _images/fs.svg]

[image: _images/na_iupac.svg]

[image: _images/nnum.svg]

[image: _images/num.svg]

[image: _images/offset.svg]

[image: _images/pm.svg]

[image: _images/pro_ext.svg]

[image: _images/pro_fs.svg]

[image: _images/snum.svg]

[image: _images/term13.svg]

[image: _images/term1.svg]

[image: _images/term3.svg]

HGVS Railroad Diagram

Generated from hgvs (https://github.com/biocommons/hgvs)

1b1f788ef473+ default tip

See the source code for the OMeta-based grammar

Variants

[image: _images/hgvs_variant.svg]

[image: _images/g_variant.svg]

[image: _images/m_variant.svg]

[image: _images/c_variant.svg]

[image: _images/n_variant.svg]

[image: _images/r_variant.svg]

[image: _images/p_variant.svg]

Intervals

[image: _images/c_interval.svg]

[image: _images/def_c_interval.svg]

[image: _images/def_g_interval.svg]

[image: _images/def_m_interval.svg]

[image: _images/def_n_interval.svg]

[image: _images/def_p_interval.svg]

[image: _images/def_r_interval.svg]

[image: _images/g_interval.svg]

[image: _images/m_interval.svg]

[image: _images/n_interval.svg]

[image: _images/p_interval.svg]

[image: _images/r_interval.svg]

Localized Edits

[image: _images/c_posedit.svg]

[image: _images/c_typed_posedit.svg]

[image: _images/g_posedit.svg]

[image: _images/g_typed_posedit.svg]

[image: _images/m_posedit.svg]

[image: _images/m_typed_posedit.svg]

[image: _images/n_posedit.svg]

[image: _images/n_typed_posedit.svg]

[image: _images/p_posedit_special.svg]

[image: _images/p_posedit.svg]

[image: _images/p_typed_posedit.svg]

[image: _images/r_posedit.svg]

[image: _images/r_typed_posedit.svg]

Positions

[image: _images/hgvs_position.svg]

[image: _images/c_hgvs_position.svg]

[image: _images/c_pos.svg]

[image: _images/def_c_pos.svg]

[image: _images/g_hgvs_position.svg]

[image: _images/g_pos.svg]

[image: _images/def_g_pos.svg]

[image: _images/m_hgvs_position.svg]

[image: _images/m_pos.svg]

[image: _images/def_m_pos.svg]

[image: _images/n_hgvs_position.svg]

[image: _images/n_pos.svg]

[image: _images/def_n_pos.svg]

[image: _images/p_hgvs_position.svg]

[image: _images/p_pos.svg]

[image: _images/def_p_pos.svg]

[image: _images/r_hgvs_position.svg]

[image: _images/r_pos.svg]

[image: _images/def_r_pos.svg]

Edits (sequence changes)

[image: _images/dna_copy.svg]

[image: _images/dna_delins.svg]

[image: _images/dna_del.svg]

[image: _images/dna_dup.svg]

[image: _images/dna_edit_mu.svg]

[image: _images/dna_edit.svg]

[image: _images/dna_ident.svg]

[image: _images/dna_ins.svg]

[image: _images/dna_inv.svg]

[image: _images/dna_subst.svg]

[image: _images/pro_delins.svg]

[image: _images/pro_del.svg]

[image: _images/pro_dup.svg]

[image: _images/pro_edit_mu.svg]

[image: _images/pro_edit.svg]

[image: _images/pro_ident.svg]

[image: _images/pro_ins.svg]

[image: _images/pro_subst.svg]

[image: _images/rna_delins.svg]

[image: _images/rna_del.svg]

[image: _images/rna_dup.svg]

[image: _images/rna_edit_mu.svg]

[image: _images/rna_edit.svg]

[image: _images/rna_ident.svg]

[image: _images/rna_ins.svg]

[image: _images/rna_inv.svg]

[image: _images/rna_subst.svg]

Sequences

[image: _images/aa13_seq.svg]

[image: _images/aa1_seq.svg]

[image: _images/aa3_seq.svg]

[image: _images/aat13_seq.svg]

[image: _images/aat1_seq.svg]

[image: _images/aat3_seq.svg]

[image: _images/dna_seq.svg]

[image: _images/rna_seq.svg]

Residues

[image: _images/aa13_ext.svg]

[image: _images/aa13_fs.svg]

[image: _images/aa13.svg]

[image: _images/aa1.svg]

[image: _images/aa3.svg]

[image: _images/aat13.svg]

[image: _images/aat1.svg]

[image: _images/aat3.svg]

[image: _images/dna_con.svg]

[image: _images/dna_iupac.svg]

[image: _images/dna.svg]

[image: _images/rna_con.svg]

[image: _images/rna_iupac.svg]

[image: _images/rna.svg]

Remaining rules

[image: _images/accn.svg]

[image: _images/base.svg]

[image: _images/ext.svg]

[image: _images/fsext_offset.svg]

[image: _images/fs.svg]

[image: _images/na_iupac.svg]

[image: _images/nnum.svg]

[image: _images/num.svg]

[image: _images/offset.svg]

[image: _images/pm.svg]

[image: _images/pro_ext.svg]

[image: _images/pro_fs.svg]

[image: _images/snum.svg]

[image: _images/term13.svg]

[image: _images/term1.svg]

[image: _images/term3.svg]

Modules

	Module Overview

	Top-level module

	Configuration
	hgvs.config

	Variant Object Representation
	hgvs.edit

	hgvs.hgvsposition

	hgvs.location

	hgvs.posedit

	hgvs.sequencevariant

	Parsing and Formatting
	hgvs.parser

	Mapping
	hgvs.assemblymapper

	hgvs.variantmapper

	hgvs.projector

	hgvs.alignmentmapper

	Validation and Normalization
	hgvs.validator

	hgvs.normalizer

	External Data Providers
	hgvs.dataproviders.interface

	hgvs.dataproviders.uta

Module Overview

	Module

	Classes

	Description

	Variant Object Representation

	hgvs.edit

	
hgvs.edit.AAExt

hgvs.edit.AAFs

hgvs.edit.AARefAlt

hgvs.edit.AASub

hgvs.edit.Dup

hgvs.edit.Edit

hgvs.edit.NACopy

hgvs.edit.NADupN

hgvs.edit.NARefAlt

hgvs.edit.Repeat

	hgvs.edit classes implement
various kinds of sequence edits. For
nucleic acids, these edits are
independent of location; amino acids
edits currently contain the location.

	hgvs.hgvsposition

	
hgvs.hgvsposition.HGVSPosition

	A non-standard representation of a
sequence location without an edit. For
example, NM_012345.6:c.72+5_73-2.

	hgvs.location

	
hgvs.location.AAPosition

hgvs.location.BaseOffsetPosition

hgvs.location.Interval

hgvs.location.SimplePosition

	Various kinds of locations. Interval is a
span from start to end; the
others are points in a sequence.

	hgvs.posedit

	
hgvs.posedit.PosEdit

	A position+edit (really, an interval and
edit).

	hgvs.variant

	
hgvs.variant.SequenceVariant

	A sequence variant of any type (g, c, m,
r, n, p). A SequenceVariant is returned
by hgvs.parser.Parser, and it is
the input and output type for
hgvs.variantmapper.VariantMapper
operations.

	Parsing and Formatting

	hgvs.parser

	
hgvs.parser.Parser

	

	Coordinate, Interval, and Variant Mapping/Transformation

	hgvs.projector

	
hgvs.projector.Projector

	

	hgvs.alignmentmapper

	
hgvs.alignmentmapper.AlignmentMapper

	

	hgvs.variantmapper

	
hgvs.variantmapper.VariantMapper

hgvs.assemblymapper.AssemblyMapper

	

	Variant Normalization and Validation

	hgvs.normalizer

	
hgvs.normalizer.Normalizer

	

	hgvs.validator

	
hgvs.validator.Validator

hgvs.validator.IntrinsicValidator

hgvs.validator.ExtrinsicValidator

	

	External Data Providers

	hgvs.dataproviders.interface

	
hgvs.dataproviders.interface.Interface

	

	hgvs.dataproviders.uta

	
hgvs.dataproviders.uta.UTABase

	

Top-level module

hgvs is a package to parse, format, and manipulate biological sequence
variants. See https://github.com/biocommons/hgvs/ for details.

Example use:

>>> import hgvs.dataproviders.uta
>>> import hgvs.parser
>>> import hgvs.variantmapper

start with these variants as strings
>>> hgvs_g, hgvs_c = “NC_000007.13:g.36561662C>T”, “NM_001637.3:c.1582G>A”

parse the genomic variant into a Python structure
>>> hp = hgvs.parser.Parser()
>>> var_g = hp.parse_hgvs_variant(hgvs_g)
>>> var_g
SequenceVariant(ac=NC_000007.13, type=g, posedit=36561662C>T, gene=None)

SequenceVariants are composed of structured objects, e.g.,
>>> var_g.posedit.pos.start
SimplePosition(base=36561662, uncertain=False)

format by stringification
>>> str(var_g)
‘NC_000007.13:g.36561662C>T’

initialize the mapper for GRCh37 with splign-based alignments
>>> hdp = hgvs.dataproviders.uta.connect()
>>> am = hgvs.assemblymapper.AssemblyMapper(hdp,
… assembly_name=”GRCh37”, alt_aln_method=”splign”,
… replace_reference=True)

identify transcripts that overlap this genomic variant
>>> transcripts = am.relevant_transcripts(var_g)
>>> sorted(transcripts)
[‘NM_001177506.1’, ‘NM_001177507.1’, ‘NM_001637.3’]

map genomic variant to one of these transcripts
>>> var_c = am.g_to_c(var_g, “NM_001637.3”)
>>> var_c
SequenceVariant(ac=NM_001637.3, type=c, posedit=1582G>A, gene=None)
>>> str(var_c)
‘NM_001637.3:c.1582G>A’

CDS coordinates use BaseOffsetPosition to support intronic offsets
>>> var_c.posedit.pos.start
BaseOffsetPosition(base=1582, offset=0, datum=Datum.CDS_START, uncertain=False)

Configuration

hgvs.config

The hgvs package uses a single, package-wide configuration instance
to control package behavior. The hgvs.config module provides that
configuration instance, via the hgvs.global_config variable.

You should not import hgvs.config directly.

Config are read from an ini-format file. hgvs.config implements a
thin wrapper on the ConfigParser instance in order to provide
attribute based lookups (rather than key). It also returns
heuristically typed values (e.g., “True” becomes True).

Although keys are settable, they are stringified on setting and
type-inferred on getting, which means that round-tripping works only
for str, int, and boolean.

>>> import hgvs.config

	
hgvs.config.global_config

	Package-wide (“global”) configuration, initialized with package
defaults. Setting configuration in this object will change global
behavior of the hgvs package.

global_config, an instance of :ref:hgvs.config.Config, supports
reading ini-like files that updates

	
class hgvs.config.Config(extended_interpolation=True)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

provides an attribute-based lookup of configparser sections and
settings.

	
read_stream(flo)

	read configuration from ini-formatted file-like object

	
class hgvs.config.ConfigGroup(section)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

The defaults are:

[mapping]
alt_aln_method = splign
assembly = GRCh38
in_par_assume = X
inferred_p_is_uncertain = True
normalize = True
replace_reference = True

[formatting]
p_3_letter = True
p_term_asterisk = False

[normalizer]
cross_boundaries = False
shuffle_direction = 3
validate = True
window_size = 20

[lru_cache]
maxsize = 100

Variant Object Representation

hgvs.edit

Representation of edit operations in HGVS variants

NARefAlt and AARefAlt are abstractions of several major variant
types. They are distinguished by whether the ref and alt elements
of the structure. The HGVS grammar for NA and AA are subtly
different (e.g., the ref AA in a protein substitution is part of the
location).

	
class hgvs.edit.AAExt(ref=None, alt=None, aaterm=None, length=None, uncertain=False)

	Bases: hgvs.edit.Edit

	
aaterm

	

	
alt

	

	
format(conf=None)

	

	
length

	

	
ref

	

	
type

	return the type of this Edit

	Returns

	edit type (str)

	
uncertain

	

	
class hgvs.edit.AAFs(ref=None, alt=None, length=None, uncertain=False)

	Bases: hgvs.edit.Edit

	
alt

	

	
format(conf=None)

	

	
length

	

	
ref

	

	
type

	return the type of this Edit

	Returns

	edit type (str)

	
uncertain

	

	
class hgvs.edit.AARefAlt(ref=None, alt=None, uncertain=False, init_met=False)

	Bases: hgvs.edit.Edit

	
alt

	

	
format(conf=None)

	

	
init_met

	

	
ref

	

	
type

	return the type of this Edit

	Returns

	edit type (str)

	
uncertain

	

	
class hgvs.edit.AASub(ref=None, alt=None, uncertain=False, init_met=False)

	Bases: hgvs.edit.AARefAlt

	
format(conf=None)

	

	
type

	return the type of this Edit

	Returns

	edit type (str)

	
class hgvs.edit.Conv(from_ac=None, from_type=None, from_pos=None, uncertain=False)

	Bases: hgvs.edit.Edit

Conversion

	
from_ac

	

	
from_pos

	

	
from_type

	

	
type

	return the type of this Edit

	Returns

	edit type (str)

	
uncertain

	

	
class hgvs.edit.Dup(ref=None, uncertain=False)

	Bases: hgvs.edit.Edit

	
format(conf=None)

	

	
ref

	

	
ref_s

	returns a string representing the ref sequence, if it is not None and smells like a sequence

	
type

	return the type of this Edit

	Returns

	edit type (str)

	
uncertain

	

	
class hgvs.edit.Edit

	Bases: object [https://docs.python.org/3/library/functions.html#object]

	
format(conf=None)

	

	
class hgvs.edit.Inv(ref=None, uncertain=False)

	Bases: hgvs.edit.Edit

Inversion

	
ref

	

	
ref_n

	returns an integer, either from the seq instance variable if it’s a number,
or None otherwise

	
ref_s

	

	
type

	return the type of this Edit

	Returns

	edit type (str)

	
uncertain

	

	
class hgvs.edit.NACopy(copy=None, uncertain=False)

	Bases: hgvs.edit.Edit

Represent copy number variants (Invitae-specific use)

This class is intended for Invitae use only and does not represent
a standard HGVS concept. The class may be changed, moved, or
removed without notice.

	
copy

	

	
type

	return the type of this Edit

	Returns

	edit type (str)

	
uncertain

	

	
class hgvs.edit.NARefAlt(ref=None, alt=None, uncertain=False)

	Bases: hgvs.edit.Edit

represents substitutions, deletions, insertions, and indels.

	Variables

	
	ref – reference sequence or length

	alt – alternate sequence

	uncertain – boolean indicating whether the variant is uncertain/undetermined

	
alt

	

	
format(conf=None)

	

	
ref

	

	
ref_n

	returns an integer, either from the ref instance variable if it’s a number, or the length of
ref if it’s a string, or None otherwise

>>> NARefAlt("ACGT").ref_n
4
>>> NARefAlt("7").ref_n
7
>>> NARefAlt(7).ref_n
7

	
ref_s

	returns a string representing the ref sequence, if it is not None and smells like a sequence

>>> NARefAlt("ACGT").ref_s
u'ACGT'
>>> NARefAlt("7").ref_s
>>> NARefAlt(7).ref_s

	
type

	return the type of this Edit

	Returns

	edit type (str)

	
uncertain

	

	
class hgvs.edit.Repeat(ref=None, min=None, max=None, uncertain=False)

	Bases: hgvs.edit.Edit

	
format(conf=None)

	

	
max

	

	
min

	

	
ref

	

	
type

	return the type of this Edit

	Returns

	edit type (str)

	
uncertain

	

hgvs.hgvsposition

Represent partial HGVS tags that refer to a position without alleles

	
class hgvs.hgvsposition.HGVSPosition(ac, type, pos, gene=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

HGVSPosition – Represent partial HGVS tags that refer to a position without alleles

	Parameters

	
	ac (str [https://docs.python.org/3/library/stdtypes.html#str]) – sequence accession

	type (str [https://docs.python.org/3/library/stdtypes.html#str]) – type of sequence and coordinate

	pos (str [https://docs.python.org/3/library/stdtypes.html#str]) – sequence position

	gene (str [https://docs.python.org/3/library/stdtypes.html#str]) – gene symbol (may be None)

	
ac

	

	
gene

	

	
pos

	

	
type

	

hgvs.location

Provides classes for dealing with the locations of HGVS variants

This module provides for Representing the location of variants in HGVS nomenclature, including:

	integers and integer intervals (e.g., NC_012345.6:g.3403243_3403248A>C)

	CDS positions and intervals (e.g., NM_01234.5:c.56+12_56+14delAC)

	CDS stop coordinates (e.g., NM_01234.5:c.*13A>C)

Classes:

	SimplePosition – a simple integer

	BaseOffsetPosition – a position with datum, base, and offset for c. and r. coordinates

	AAPosition – an amino acid position (with AA)

	Interval – an interval of Positions

	
class hgvs.location.AAPosition(base=None, aa=None, uncertain=False)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

	
aa

	

	
base

	

	
format(conf=None)

	

	
is_uncertain

	return True if the position is marked uncertain or undefined

	
pos

	return base, for backward compatibility

	
uncertain

	

	
validate()

	

	
class hgvs.location.BaseOffsetInterval(start=None, end=None, uncertain=False)

	Bases: hgvs.location.Interval

BaseOffsetInterval isa Interval of BaseOffsetPositions. The only
additional functionality over Interval is to ensure that the dutum
of end and start are compatible.

	
check_datum()

	

	
class hgvs.location.BaseOffsetPosition(base=None, offset=0, datum=<Datum.SEQ_START: 1>, uncertain=False)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Class for dealing with CDS coordinates in transcript variants.

This class models CDS positions using a base coordinate, which is
measured relative to a specified datum (CDS_START or CDS_END), and
an offset, which is 0 for exonic positions and non-zero for intronic
positions. Positions and offsets are 1-based, with no 0, per the HGVS
recommendations. (If you”re using this with UTA, be aware that UTA
uses interbase coordinates.)

	hgvs

	datum

	base

	offset

	meaning

	r.55

	SEQ_START

	55

	0

	RNA position 55

	c.55

	CDS_START

	55

	0

	CDS position 55

	c.55

	CDS_START

	55

	0

	CDS position 55

	c.55+1

	CDS_START

	55

	1

	intronic variant +1 from boundary

	c.-55

	CDS_START

	-55

	0

	5’ UTR variant, 55 nt upstream of ATG

	c.1

	CDS_START

	1

	0

	start codon

	c.1234

	CDS_START

	1234

	0

	stop codon (assuming CDS length is 1233)

	c.*1

	CDS_END

	0

	1

	STOP + 1

	c.*55

	CDS_END

	0

	55

	3’ UTR variant, 55 nt after STOP

	
base

	

	
datum

	

	
format(conf)

	

	
is_intronic

	returns True if the variant is intronic (if the offset is None or non-zero)

	
is_uncertain

	return True if the position is marked uncertain or undefined

	
offset

	

	
uncertain

	

	
validate()

	

	
class hgvs.location.Interval(start=None, end=None, uncertain=False)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

	
end

	

	
format(conf=None)

	

	
is_uncertain

	return True if the position is marked uncertain or undefined

	
start

	

	
uncertain

	

	
validate()

	

	
class hgvs.location.SimplePosition(base=None, uncertain=False)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

	
base

	

	
format(conf)

	

	
is_uncertain

	return True if the position is marked uncertain or undefined

	
uncertain

	

	
validate()

	

hgvs.posedit

implements a (position,edit) tuple that represents a localized sequence change

	
class hgvs.posedit.PosEdit(pos=None, edit=None, uncertain=False)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

represents a simple variant, consisting of a single position and edit pair

	
edit

	

	
format(conf=None)

	Formatting the string of PosEdit

	
length_change(on_error_raise=True)

	Returns the net length change for this posedit.

The method for computing the net length change depends on the
type of variant (dup, del, ins, etc). The length_change
method hides this complexity from callers.

	Parameters

	
	self (hgvs.posedit.PosEdit) – a PosEdit instance

	on_error_raise (bool [https://docs.python.org/3/library/functions.html#bool]) – whether to raise an exception on errors

	Returns

	A signed int for the net change in length. Negative values imply net deletions, 0 implies a balanced insertion and deletion (e.g., SNV), and positive values imply a net insertion.

	Raises

	HGVSUnsupportedOperationError – When determining the length for this variant type is ill-defined or unsupported.

There are many circumstances in which the net length change
cannot be determined, is ill-defined, or is unsupported. In
these cases, the result depends on the value of
on_error_raise: when on_error_raise is True, an exception
is raised; when False, the exception is caught and None is
returned. Callers might wish to pass on_error_raise=False
in list comprehensions to avoid dealing with exceptions.

	
pos

	

	
uncertain

	

	
validate()

	

hgvs.sequencevariant

represents simple sequence-based variants

	
class hgvs.sequencevariant.SequenceVariant(ac, type, posedit, gene=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

represents a basic HGVS variant. The only requirement is that each
component can be stringified; for example, passing pos as either a string
or an hgvs.location.CDSInterval (for example) are both intended uses

	
ac

	

	
fill_ref(hdp)

	

	
format(conf=None)

	Formatting the stringification of sequence variants

	Parameters

	conf – a dict comprises formatting options. None is to use global settings.

See hgvs.config.

	
gene

	

	
posedit

	

	
type

	

	
validate()

	

Parsing and Formatting

hgvs.parser

Provides parser for HGVS strings and HGVS-related conceptual
components, such as intronic-offset coordiates

	
class hgvs.parser.Parser(grammar_fn='/home/docs/.cache/Python-Eggs/hgvs-1.4.0-py3.7.egg-tmp/hgvs/_data/hgvs.pymeta', expose_all_rules=False)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Provides comprehensive parsing of HGVS varaint strings (i.e.,
variants represented according to the Human Genome Variation
Society recommendations) into Python representations. The class
wraps a Parsing Expression Grammar, exposing rules of that grammar
as methods (prefixed with parse_) that parse an input string
according to the rule. The class exposes all rules, so that it’s
possible to parse both full variant representations as well as
components, like so:

>>> hp = Parser()
>>> v = hp.parse_hgvs_variant("NM_01234.5:c.22+1A>T")
>>> v
SequenceVariant(ac=NM_01234.5, type=c, posedit=22+1A>T, gene=None)
>>> v.posedit.pos
BaseOffsetInterval(start=22+1, end=22+1, uncertain=False)
>>> i = hp.parse_c_interval("22+1")
>>> i
BaseOffsetInterval(start=22+1, end=22+1, uncertain=False)

The parse_hgvs_variant and parse_c_interval methods correspond
to the hgvs_variant and c_interval rules in the grammar,
respectively.

As a convenience, the Parser provides the parse method as a
shorthand for parse_hgvs_variant:
>>> v = hp.parse(“NM_01234.5:c.22+1A>T”)
>>> v
SequenceVariant(ac=NM_01234.5, type=c, posedit=22+1A>T, gene=None)

Because the methods are generated on-the-fly and depend on the
grammar that is loaded at runtime, a full list of methods is not
available in the documentation. However, the list of
rules/methods is available via the rules instance variable.

A few notable methods are listed below:

parse_hgvs_variant() parses any valid HGVS string supported by the grammar.

>>> hp.parse_hgvs_variant("NM_01234.5:c.22+1A>T")
SequenceVariant(ac=NM_01234.5, type=c, posedit=22+1A>T, gene=None)
>>> hp.parse_hgvs_variant("NP_012345.6:p.Ala22Trp")
SequenceVariant(ac=NP_012345.6, type=p, posedit=Ala22Trp, gene=None)

The hgvs_variant rule iteratively attempts parsing using the
major classes of HGVS variants. For slight improvements in
efficiency, those rules may be invoked directly:

>>> hp.parse_p_variant("NP_012345.6:p.Ala22Trp")
SequenceVariant(ac=NP_012345.6, type=p, posedit=Ala22Trp, gene=None)

Similarly, components of the underlying structure may be parsed
directly as well:

>>> hp.parse_c_posedit("22+1A>T")
PosEdit(pos=22+1, edit=A>T, uncertain=False)
>>> hp.parse_c_interval("22+1")
BaseOffsetInterval(start=22+1, end=22+1, uncertain=False)

	
parse(v)

	parse HGVS variant v, returning a SequenceVariant

	Parameters

	v (str [https://docs.python.org/3/library/stdtypes.html#str]) – an HGVS-formatted variant as a string

	Return type

	SequenceVariant

Mapping

hgvs.assemblymapper

	
class hgvs.assemblymapper.AssemblyMapper(hdp, assembly_name='GRCh38', alt_aln_method='splign', normalize=True, prevalidation_level='EXTRINSIC', in_par_assume='X', replace_reference=True, add_gene_symbol=False, *args, **kwargs)

	Bases: hgvs.variantmapper.VariantMapper

Provides simplified variant mapping for a single assembly and
transcript-reference alignment method.

AssemblyMapper inherits VariantMapper, which provides all
projection functionality, and adds:

	Automatic selection of genomic sequence accession

	Transcript selection from genomic coordinates

	Normalization after projection

	Special handling for PAR regions

AssemblyMapper is instantiated with an assembly name and
alt_aln_method. These enable the following conveniences over
VariantMapper:

	The assembly and alignment method are used to
automatically select an appropriate chromosomal reference
sequence when mapping from a transcript to a genome (i.e.,
c_to_g(…) and n_to_g(…)).

	A new method, relevant_trancripts(g_variant), returns a list of
transcript accessions available for the specified variant. These
accessions are candidates mapping from genomic to trancript
coordinates (i.e., g_to_c(…) and g_to_n(…)).

Note: AssemblyMapper supports only chromosomal references (e.g.,
NC_000006.11). It does not support contigs or other genomic
sequences (e.g., NT_167249.1).

	Parameters

	
	hdp (object [https://docs.python.org/3/library/functions.html#object]) – instance of hgvs.dataprovider subclass

	replace_reference (bool [https://docs.python.org/3/library/functions.html#bool]) – replace reference (entails additional network access)

	assembly_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of assembly (“GRCh38.p5”)

	alt_aln_method (str [https://docs.python.org/3/library/stdtypes.html#str]) – genome-transcript alignment method (“splign”, “blat”, “genewise”)

	normalize (bool [https://docs.python.org/3/library/functions.html#bool]) – normalize variants

	prevalidation_level (str [https://docs.python.org/3/library/stdtypes.html#str]) – None or Intrinsic or Extrinsic validation before mapping

	in_par_assume (str [https://docs.python.org/3/library/stdtypes.html#str]) – during x_to_g, assume this chromosome name if alignment is ambiguous

	Raises

	HGVSError subclasses – for a variety of mapping and data lookup failures

	
c_to_g(var_c)

	Given a parsed c. variant, return a g. variant on the specified
transcript using the specified alignment method (default is
“splign” from NCBI).

	Parameters

	
	var_c (hgvs.sequencevariant.SequenceVariant) – a variant object

	alt_ac (str [https://docs.python.org/3/library/stdtypes.html#str]) – a reference sequence accession (e.g., NC_000001.11)

	alt_aln_method (str [https://docs.python.org/3/library/stdtypes.html#str]) – the alignment method; valid values depend on data source

	Returns

	variant object (hgvs.sequencevariant.SequenceVariant)

	Raises

	HGVSInvalidVariantError – if var_c is not of type “c”

	
c_to_n(var_c)

	Given a parsed c. variant, return a n. variant on the specified
transcript using the specified alignment method (default is
“transcript” indicating a self alignment).

	Parameters

	var_c (hgvs.sequencevariant.SequenceVariant) – a variant object

	Returns

	variant object (hgvs.sequencevariant.SequenceVariant)

	Raises

	HGVSInvalidVariantError – if var_c is not of type “c”

	
c_to_p(var_c)

	Converts a c. SequenceVariant to a p. SequenceVariant on the specified protein accession
Author: Rudy Rico

	Parameters

	
	var_c (SequenceVariant) – hgvsc tag

	pro_ac (str [https://docs.python.org/3/library/stdtypes.html#str]) – protein accession

	Return type

	hgvs.sequencevariant.SequenceVariant

	
g_to_c(var_g, tx_ac)

	Given a parsed g. variant, return a c. variant on the specified
transcript using the specified alignment method (default is
“splign” from NCBI).

	Parameters

	
	var_g (hgvs.sequencevariant.SequenceVariant) – a variant object

	tx_ac (str [https://docs.python.org/3/library/stdtypes.html#str]) – a transcript accession (e.g., NM_012345.6 or ENST012345678)

	alt_aln_method (str [https://docs.python.org/3/library/stdtypes.html#str]) – the alignment method; valid values depend on data source

	Returns

	variant object (hgvs.sequencevariant.SequenceVariant) using CDS coordinates

	Raises

	HGVSInvalidVariantError – if var_g is not of type “g”

	
g_to_n(var_g, tx_ac)

	Given a parsed g. variant, return a n. variant on the specified
transcript using the specified alignment method (default is
“splign” from NCBI).

	Parameters

	
	var_g (hgvs.sequencevariant.SequenceVariant) – a variant object

	tx_ac (str [https://docs.python.org/3/library/stdtypes.html#str]) – a transcript accession (e.g., NM_012345.6 or ENST012345678)

	alt_aln_method (str [https://docs.python.org/3/library/stdtypes.html#str]) – the alignment method; valid values depend on data source

	Returns

	variant object (hgvs.sequencevariant.SequenceVariant) using transcript (n.) coordinates

	Raises

	HGVSInvalidVariantError – if var_g is not of type “g”

	
g_to_t(var_g, tx_ac)

	

	
n_to_c(var_n)

	Given a parsed n. variant, return a c. variant on the specified
transcript using the specified alignment method (default is
“transcript” indicating a self alignment).

	Parameters

	var_n (hgvs.sequencevariant.SequenceVariant) – a variant object

	Returns

	variant object (hgvs.sequencevariant.SequenceVariant)

	Raises

	HGVSInvalidVariantError – if var_n is not of type “n”

	
n_to_g(var_n)

	Given a parsed n. variant, return a g. variant on the specified
transcript using the specified alignment method (default is
“splign” from NCBI).

	Parameters

	
	var_n (hgvs.sequencevariant.SequenceVariant) – a variant object

	alt_ac (str [https://docs.python.org/3/library/stdtypes.html#str]) – a reference sequence accession (e.g., NC_000001.11)

	alt_aln_method (str [https://docs.python.org/3/library/stdtypes.html#str]) – the alignment method; valid values depend on data source

	Returns

	variant object (hgvs.sequencevariant.SequenceVariant)

	Raises

	HGVSInvalidVariantError – if var_n is not of type “n”

	
relevant_transcripts(var_g)

	return list of transcripts accessions (strings) for given variant,
selected by genomic overlap

	
t_to_g(var_t)

	

	
t_to_p(var_t)

	Return a protein variant, or “non-coding” for non-coding variant types

CAUTION: Unlike other x_to_y methods that always return
SequenceVariant instances, this method returns a string when
the variant type is n. This is intended as a convenience,
particularly when looping over relevant_transcripts,
projecting with g_to_t, then desiring a protein
representation for coding transcripts.

hgvs.variantmapper

Provides VariantMapper and AssemblyMapper to project variants
between sequences using AlignmentMapper.

	
class hgvs.variantmapper.VariantMapper(hdp, replace_reference=True, prevalidation_level='EXTRINSIC', add_gene_symbol=False)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Maps SequenceVariant objects between g., n., r., c., and p. representations.

g⟷{c,n,r} projections are similar in that c, n, and r variants
may use intronic coordinates. There are two essential differences
that distinguish the three types:

	Sequence start: In n and r variants, position 1 is the sequence
start; in c variants, 1 is the transcription start site.

	Alphabet: In n and c variants, sequences are DNA; in
r. variants, sequences are RNA.

This differences are summarized in this diagram:

g ----acgtatgcac--gtctagacgt---- ----acgtatgcac--gtctagacgt---- ----acgtatgcac--gtctagacgt----
 \ \/ / \ \/ / \ \/ /
c acgtATGCACGTCTAGacgt n acgtatgcacgtctagacgt r acguaugcacgucuagacgu
 1 1 1
p MetHisValTer

The g excerpt and exon structures are identical. The g⟷n
transformation, which is the most basic, accounts for the offset
of the aligned sequences (shown with “1”) and the exon structure.
The g⟷c transformation is akin to g⟷n transformation, but
requires an addition offset to account for the translation start
site (c.1). The CDS in uppercase. The g⟷c transformation is
akin to g⟷n transformation with a change of alphabet.

Therefore, this this code uses g⟷n as the core transformation
between genomic and c, n, and r variants: All c⟷g and r⟷g
transformations use n⟷g after accounting for the above
differences. For example, c_to_g accounts for the transcription
start site offset, then calls n_to_g.

All methods require and return objects of type
hgvs.sequencevariant.SequenceVariant.

	Parameters

	
	replace_reference (bool [https://docs.python.org/3/library/functions.html#bool]) – replace reference (entails additional network access)

	prevalidation_level (str [https://docs.python.org/3/library/stdtypes.html#str]) – None or Intrinsic or Extrinsic validation before mapping

	
c_to_g(var_c, alt_ac, alt_aln_method='splign')

	Given a parsed c. variant, return a g. variant on the specified
transcript using the specified alignment method (default is
“splign” from NCBI).

	Parameters

	
	var_c (hgvs.sequencevariant.SequenceVariant) – a variant object

	alt_ac (str [https://docs.python.org/3/library/stdtypes.html#str]) – a reference sequence accession (e.g., NC_000001.11)

	alt_aln_method (str [https://docs.python.org/3/library/stdtypes.html#str]) – the alignment method; valid values depend on data source

	Returns

	variant object (hgvs.sequencevariant.SequenceVariant)

	Raises

	HGVSInvalidVariantError – if var_c is not of type “c”

	
c_to_n(var_c)

	Given a parsed c. variant, return a n. variant on the specified
transcript using the specified alignment method (default is
“transcript” indicating a self alignment).

	Parameters

	var_c (hgvs.sequencevariant.SequenceVariant) – a variant object

	Returns

	variant object (hgvs.sequencevariant.SequenceVariant)

	Raises

	HGVSInvalidVariantError – if var_c is not of type “c”

	
c_to_p(var_c, pro_ac=None)

	Converts a c. SequenceVariant to a p. SequenceVariant on the specified protein accession
Author: Rudy Rico

	Parameters

	
	var_c (SequenceVariant) – hgvsc tag

	pro_ac (str [https://docs.python.org/3/library/stdtypes.html#str]) – protein accession

	Return type

	hgvs.sequencevariant.SequenceVariant

	
g_to_c(var_g, tx_ac, alt_aln_method='splign')

	Given a parsed g. variant, return a c. variant on the specified
transcript using the specified alignment method (default is
“splign” from NCBI).

	Parameters

	
	var_g (hgvs.sequencevariant.SequenceVariant) – a variant object

	tx_ac (str [https://docs.python.org/3/library/stdtypes.html#str]) – a transcript accession (e.g., NM_012345.6 or ENST012345678)

	alt_aln_method (str [https://docs.python.org/3/library/stdtypes.html#str]) – the alignment method; valid values depend on data source

	Returns

	variant object (hgvs.sequencevariant.SequenceVariant) using CDS coordinates

	Raises

	HGVSInvalidVariantError – if var_g is not of type “g”

	
g_to_n(var_g, tx_ac, alt_aln_method='splign')

	Given a parsed g. variant, return a n. variant on the specified
transcript using the specified alignment method (default is
“splign” from NCBI).

	Parameters

	
	var_g (hgvs.sequencevariant.SequenceVariant) – a variant object

	tx_ac (str [https://docs.python.org/3/library/stdtypes.html#str]) – a transcript accession (e.g., NM_012345.6 or ENST012345678)

	alt_aln_method (str [https://docs.python.org/3/library/stdtypes.html#str]) – the alignment method; valid values depend on data source

	Returns

	variant object (hgvs.sequencevariant.SequenceVariant) using transcript (n.) coordinates

	Raises

	HGVSInvalidVariantError – if var_g is not of type “g”

	
g_to_t(var_g, tx_ac, alt_aln_method='splign')

	

	
n_to_c(var_n)

	Given a parsed n. variant, return a c. variant on the specified
transcript using the specified alignment method (default is
“transcript” indicating a self alignment).

	Parameters

	var_n (hgvs.sequencevariant.SequenceVariant) – a variant object

	Returns

	variant object (hgvs.sequencevariant.SequenceVariant)

	Raises

	HGVSInvalidVariantError – if var_n is not of type “n”

	
n_to_g(var_n, alt_ac, alt_aln_method='splign')

	Given a parsed n. variant, return a g. variant on the specified
transcript using the specified alignment method (default is
“splign” from NCBI).

	Parameters

	
	var_n (hgvs.sequencevariant.SequenceVariant) – a variant object

	alt_ac (str [https://docs.python.org/3/library/stdtypes.html#str]) – a reference sequence accession (e.g., NC_000001.11)

	alt_aln_method (str [https://docs.python.org/3/library/stdtypes.html#str]) – the alignment method; valid values depend on data source

	Returns

	variant object (hgvs.sequencevariant.SequenceVariant)

	Raises

	HGVSInvalidVariantError – if var_n is not of type “n”

	
t_to_g(var_t, alt_ac, alt_aln_method='splign')

	

hgvs.projector

Utility class that projects variants from one transcript to another
via a common reference sequence.

	
class hgvs.projector.Projector(hdp, alt_ac, src_ac, dst_ac, src_alt_aln_method='splign', dst_alt_aln_method='splign')

	Bases: object [https://docs.python.org/3/library/functions.html#object]

The Projector class implements liftover between two transcripts via a
common reference sequence.

	Parameters

	
	hdp – HGVS Data Provider Interface-compliant instance (see hgvs.dataproviders.interface.Interface)

	ref – string representing the common reference assembly (e.g., GRCh37.p10)

	src_ac – string representing the source transcript accession (e.g., NM_000551.2)

	dst_ac – string representing the destination transcript accession (e.g., NM_000551.3)

	src_alt_aln_method – string representing the source transcript alignment method

	dst_alt_aln_method – string representing the destination transcript alignment method

This class assumes (and verifies) that the transcripts are on the same
strand. This assumption obviates some work in flipping sequence
variants twice unnecessarily.

	
project_interval_backward(c_interval)

	project c_interval on the destination transcript to the
source transcript

	Parameters

	c_interval – an hgvs.interval.Interval object on the destination transcript

	Returns

	c_interval: an hgvs.interval.Interval object on the source transcript

	
project_interval_forward(c_interval)

	project c_interval on the source transcript to the
destination transcript

	Parameters

	c_interval – an hgvs.interval.Interval object on the source transcript

	Returns

	c_interval: an hgvs.interval.Interval object on the destination transcript

	
project_variant_backward(c_variant)

	project c_variant on the source transcript onto the destination transcript

	Parameters

	c_variant – an hgvs.sequencevariant.SequenceVariant object on the source transcript

	Returns

	c_variant: an hgvs.sequencevariant.SequenceVariant object on the destination transcript

	
project_variant_forward(c_variant)

	project c_variant on the source transcript onto the destination transcript

	Parameters

	c_variant – an hgvs.sequencevariant.SequenceVariant object on the source transcript

	Returns

	c_variant: an hgvs.sequencevariant.SequenceVariant object on the destination transcript

hgvs.alignmentmapper

Mapping positions between pairs of sequence alignments

The AlignmentMapper class is at the heart of mapping between aligned sequences.

	
class hgvs.alignmentmapper.AlignmentMapper(hdp, tx_ac, alt_ac, alt_aln_method)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Provides coordinate (not variant) mapping operations between
genomic (g), non-coding (n) and cds (c) coordinates according to a CIGAR.

	Parameters

	
	hdp – HGVS Data Provider Interface-compliant instance (see hgvs.dataproviders.interface.Interface)

	tx_ac (str [https://docs.python.org/3/library/stdtypes.html#str]) – string representing transcript accession (e.g., NM_000551.2)

	alt_ac (str [https://docs.python.org/3/library/stdtypes.html#str]) – string representing the reference sequence accession (e.g., NC_000019.10)

	alt_aln_method (str [https://docs.python.org/3/library/stdtypes.html#str]) – string representing the alignment method; valid values depend on data source

	
alt_ac

	

	
alt_aln_method

	

	
c_to_g(c_interval)

	convert a transcript CDS (c.) interval to a genomic (g.) interval

	
c_to_n(c_interval)

	convert a transcript CDS (c.) interval to a transcript cDNA (n.) interval

	
cds_end_i

	

	
cds_start_i

	

	
cigar

	

	
cigar_op

	

	
g_to_c(g_interval)

	convert a genomic (g.) interval to a transcript CDS (c.) interval

	
g_to_n(g_interval)

	convert a genomic (g.) interval to a transcript cDNA (n.) interval

	
gc_offset

	

	
is_coding_transcript

	

	
n_to_c(n_interval)

	convert a transcript cDNA (n.) interval to a transcript CDS (c.) interval

	
n_to_g(n_interval)

	convert a transcript (n.) interval to a genomic (g.) interval

	
ref_pos

	

	
strand

	

	
tgt_len

	

	
tgt_pos

	

	
tx_ac

	

Validation and Normalization

hgvs.validator

implements validation of hgvs variants

	
class hgvs.validator.ExtrinsicValidator(hdp, strict=True)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Attempts to determine if the HGVS name validates against external data sources

	
validate(var, strict=None)

	

	
class hgvs.validator.IntrinsicValidator(strict=True)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Attempts to determine if the HGVS name is internally consistent

	
validate(var, strict=None)

	

	
class hgvs.validator.Validator(hdp, strict=True)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

invoke intrinsic and extrinsic validation

	
validate(var, strict=None)

	

hgvs.normalizer

hgvs.normalizer

	
class hgvs.normalizer.Normalizer(hdp, cross_boundaries=False, shuffle_direction=3, alt_aln_method='splign', validate=True)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Perform variant normalization

Initialize and configure the normalizer

	Parameters

	
	hdp – HGVS Data Provider Interface-compliant instance
(see hgvs.dataproviders.interface.Interface)

	cross_boundaries – whether allow the shuffling to cross the exon-intron boundary

	shuffle_direction – shuffling direction

	alt_aln_method – sequence alignment method (e.g., splign, blat)

	validate – whether validating the input variant before normalizing

	
normalize(var)

	Perform sequence variants normalization for single variant

External Data Providers

hgvs.dataproviders.interface

Defines the abstract data provider interface

	
class hgvs.dataproviders.interface.Interface(mode=None, cache=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Variant mapping and validation requires access to external data,
specifically exon structures, transcript alignments, and protein
accessions. In order to isolate the hgvs package from the myriad
choices and tradeoffs, these data are provided through an
implementation of the (abstract) HGVS Data Provider Interface.

As of June 2014, the only available data provider implementation
uses the Universal Transcript Archive (UTA) [https://github.com/biocommons/uta], a sister project
that provides access to transcripts and genome-transcript
alignments. Invitae [http://invitae.com/] provides a public UTA database instance
that is used by default; see the UTA [https://github.com/biocommons/uta/] page for instructions on
installing your own PostgreSQL or SQLite version. In the future,
other implementations may be availablefor other data sources.

Pure virtural class for the HGVS Data Provider Interface. Every
data provider implementation should be a subclass (possibly
indirect) of this class.

	Parameters

	
	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – cache mode (None[default lru cache], ‘learn’, ‘run’, ‘verify’)

	cache (str [https://docs.python.org/3/library/stdtypes.html#str]) – local cache file name

	
data_version()

	

	
get_acs_for_protein_seq(seq)

	

	
get_assembly_map(assembly_name)

	

	
get_gene_info(gene)

	

	
get_pro_ac_for_tx_ac(tx_ac)

	

	
get_seq(ac, start_i=None, end_i=None)

	

	
get_similar_transcripts(tx_ac)

	

	
get_tx_exons(tx_ac, alt_ac, alt_aln_method)

	

	
get_tx_for_gene(gene)

	

	
get_tx_for_region(alt_ac, alt_aln_method, start_i, end_i)

	

	
get_tx_identity_info(tx_ac)

	

	
get_tx_info(tx_ac, alt_ac, alt_aln_method)

	

	
get_tx_mapping_options(tx_ac)

	

	
interface_version()

	

	
required_version = None

	

	
schema_version()

	

hgvs.dataproviders.uta

implements an hgvs data provider interface using UTA
(https://github.com/biocommons/uta)

	
class hgvs.dataproviders.uta.ParseResult

	Bases: urllib.parse.ParseResult [https://docs.python.org/3/library/urllib.parse.html#urllib.parse.ParseResult]

Subclass of url.ParseResult that adds database and schema methods,
and provides stringification.

	
database

	

	
schema

	

	
class hgvs.dataproviders.uta.UTABase(url, mode=None, cache=None)

	Bases: hgvs.dataproviders.interface.Interface

	
data_version()

	

	
get_acs_for_protein_seq(seq)

	returns a list of protein accessions for a given sequence. The
list is guaranteed to contain at least one element with the
MD5-based accession (MD5_01234abc…def56789) at the end of the
list.

	
get_assembly_map(assembly_name)

	return a list of accessions for the specified assembly name (e.g., GRCh38.p5)

	
get_gene_info(gene)

	returns basic information about the gene.

	Parameters

	gene (str [https://docs.python.org/3/library/stdtypes.html#str]) – HGNC gene name

database results
hgnc | ATM
maploc | 11q22-q23
descr | ataxia telangiectasia mutated
summary | The protein encoded by this gene belongs to the PI3/PI4-kinase family. This…
aliases | AT1,ATA,ATC,ATD,ATE,ATDC,TEL1,TELO1
added | 2014-02-04 21:39:32.57125

	
get_pro_ac_for_tx_ac(tx_ac)

	Return the (single) associated protein accession for a given transcript
accession, or None if not found.

	
get_seq(ac, start_i=None, end_i=None)

	

	
get_similar_transcripts(tx_ac)

	Return a list of transcripts that are similar to the given
transcript, with relevant similarity criteria.

>> sim_tx = hdp.get_similar_transcripts(‘NM_001285829.1’)
>> dict(sim_tx[0])
{ ‘cds_eq’: False,
‘cds_es_fp_eq’: False,
‘es_fp_eq’: True,
‘tx_ac1’: ‘NM_001285829.1’,
‘tx_ac2’: ‘ENST00000498907’ }

where:

	cds_eq means that the CDS sequences are identical

	es_fp_eq means that the full exon structures are identical
(i.e., incl. UTR)

	cds_es_fp_eq means that the cds-clipped portions of the exon
structures are identical (i.e., ecluding. UTR)

	Hint: “es” = “exon set”, “fp” = “fingerprint”, “eq” = “equal”

“exon structure” refers to the start and end coordinates on a
specified reference sequence. Thus, having the same exon
structure means that the transcripts are defined on the same
reference sequence and have the same exon spans on that
sequence.

	
get_tx_exons(tx_ac, alt_ac, alt_aln_method)

	return transcript exon info for supplied accession (tx_ac, alt_ac, alt_aln_method), or None if not found

	Parameters

	
	tx_ac (str [https://docs.python.org/3/library/stdtypes.html#str]) – transcript accession with version (e.g., ‘NM_000051.3’)

	alt_ac (str [https://docs.python.org/3/library/stdtypes.html#str]) – specific genomic sequence (e.g., NC_000011.4)

	alt_aln_method (str [https://docs.python.org/3/library/stdtypes.html#str]) – sequence alignment method (e.g., splign, blat)

tx_exons = db.get_tx_exons(‘NM_199425.2’, ‘NC_000020.10’, ‘splign’)
len(tx_exons)
3

tx_exons have the following attributes:

{
 'tes_exon_set_id' : 98390
 'aes_exon_set_id' : 298679
 'tx_ac' : 'NM_199425.2'
 'alt_ac' : 'NC_000020.10'
 'alt_strand' : -1
 'alt_aln_method' : 'splign'
 'ord' : 2
 'tx_exon_id' : 936834
 'alt_exon_id' : 2999028
 'tx_start_i' : 786
 'tx_end_i' : 1196
 'alt_start_i' : 25059178
 'alt_end_i' : 25059588
 'cigar' : '410='
}

For example:

tx_exons[0][‘tx_ac’]
‘NM_199425.2’

	
get_tx_for_gene(gene)

	return transcript info records for supplied gene, in order of decreasing length

	Parameters

	gene (str [https://docs.python.org/3/library/stdtypes.html#str]) – HGNC gene name

	
get_tx_for_region(alt_ac, alt_aln_method, start_i, end_i)

	return transcripts that overlap given region

	Parameters

	
	alt_ac (str [https://docs.python.org/3/library/stdtypes.html#str]) – reference sequence (e.g., NC_000007.13)

	alt_aln_method (str [https://docs.python.org/3/library/stdtypes.html#str]) – alignment method (e.g., splign)

	start_i (int [https://docs.python.org/3/library/functions.html#int]) – 5’ bound of region

	end_i (int [https://docs.python.org/3/library/functions.html#int]) – 3’ bound of region

	
get_tx_identity_info(tx_ac)

	returns features associated with a single transcript.

	Parameters

	tx_ac (str [https://docs.python.org/3/library/stdtypes.html#str]) – transcript accession with version (e.g., ‘NM_199425.2’)

database output
-[RECORD 1]–+————-
tx_ac | NM_199425.2
alt_ac | NM_199425.2
alt_aln_method | transcript
cds_start_i | 283
cds_end_i | 1003
lengths | {707,79,410}
hgnc | VSX1

	
get_tx_info(tx_ac, alt_ac, alt_aln_method)

	return a single transcript info for supplied accession (tx_ac, alt_ac, alt_aln_method), or None if not found

	Parameters

	
	tx_ac (str [https://docs.python.org/3/library/stdtypes.html#str]) – transcript accession with version (e.g., ‘NM_000051.3’)

	alt_ac (str [https://docs.python.org/3/library/stdtypes.html#str]) – specific genomic sequence (e.g., NC_000011.4)

	alt_aln_method (str [https://docs.python.org/3/library/stdtypes.html#str]) – sequence alignment method (e.g., splign, blat)

database output
-[RECORD 1]–+————
hgnc | ATM
cds_start_i | 385
cds_end_i | 9556
tx_ac | NM_000051.3
alt_ac | AC_000143.1
alt_aln_method | splign

	
get_tx_mapping_options(tx_ac)

	Return all transcript alignment sets for a given transcript
accession (tx_ac); returns empty list if transcript does not
exist. Use this method to discovery possible mapping options
supported in the database

	Parameters

	tx_ac (str [https://docs.python.org/3/library/stdtypes.html#str]) – transcript accession with version (e.g., ‘NM_000051.3’)

database output
-[RECORD 1]–+————
hgnc | ATM
cds_start_i | 385
cds_end_i | 9556
tx_ac | NM_000051.3
alt_ac | AC_000143.1
alt_aln_method | splign
-[RECORD 2]–+————
hgnc | ATM
cds_start_i | 385
cds_end_i | 9556
tx_ac | NM_000051.3
alt_ac | NC_000011.9
alt_aln_method | blat

	
required_version = '1.1'

	

	
schema_version()

	

	
class hgvs.dataproviders.uta.UTA_postgresql(url, pooling=False, application_name=None, mode=None, cache=None)

	Bases: hgvs.dataproviders.uta.UTABase

	
close()

	

	
hgvs.dataproviders.uta.connect(db_url=None, pooling=False, application_name=None, mode=None, cache=None)

	Connect to a UTA database instance and return a UTA interface instance.

	Parameters

	
	db_url (string) – URL for database connection

	pooling (bool [https://docs.python.org/3/library/functions.html#bool]) – whether to use connection pooling (postgresql only)

	application_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – log application name in connection (useful for debugging; PostgreSQL only)

When called with an explicit db_url argument, that db_url is used for connecting.

When called without an explicit argument, the function default is
determined by the environment variable UTA_DB_URL if it exists, or
hgvs.datainterface.uta.public_db_url otherwise.

>>> hdp = connect()
>>> hdp.schema_version()
'1.1'

The format of the db_url is driver://user:pass@host/database/schema (the same
as that used by SQLAlchemy). Examples:

	A remote public postgresql database:

	postgresql://anonymous:anonymous@uta.biocommons.org/uta/uta_20170707’

	A local postgresql database:

	postgresql://localhost/uta_dev/uta_20170707

For postgresql db_urls, pooling=True causes connect to use a
psycopg2.pool.ThreadedConnectionPool.

Privacy Issues

This page provides details about how the hgvs package works, with a
focus on privacy issues that users may have. The intent is to provide
users with enough information to assess privacy concerns for their
institutions.

What’s not done

No biologically-relevant data are collected or aggregated from any use
of the hgvs package for any purpose. Furthermore, variant
manipulation is entirely local. Sequence variants are never sent over
the network.

Someg hgvs operations require additional data. For example, mapping
variants between a genomic reference and a transcript requires
transcript-specific alignment information. Currently, fetching
addition data requires a network connection.

(We are considering whether and how to provide fully self-contained
installations and do not require network access, but such is not
available at this time.)

Data Provider Queries

hgvs requires a lot of specialized addition data to validate,
normalize, and map variants. All queries for data are consolidated
into a data provider interface that consists of 11 queries. The
method signatures, including input arguments, are shown below with a
discussion about privacy consequences.

	fetch_seq(ac, start_i, end_i)

	This method fetches reference sequence in the context of the
variant and is required in order to validate, normalize, and
replace variant reference sequences. By sending accession and
coordinates, it reveals a specific region of interest (and
therefore genes and possible clinical conditions).

The current implementation, which fetches transcripts and
genomic sequences from UTA, NCBI, and Ensembl, is a measure
until we complete a comprehensive sequence archive.

	data_version(), schema_version()

	Queries for meta data about the data provider.

	get_acs_for_protein_seq(seq), get_gene_info(gene), get_tx_exons(tx_ac, alt_ac, alt_aln_method), get_tx_for_gene(gene), get_tx_identity_info(tx_ac), get_tx_info(tx_ac, alt_ac, alt_aln_method), get_tx_mapping_options(tx_ac), get_tx_seq(ac)

	For all of these queries, the inputs are combinations of transcript
accession, reference accession, gene name. These are likely too
broad to constitute serious privacy concerns.

Information about current connections

The following is an example of the kinds of information available
about a current connection as collected by PostgreSQL.

	
	

	datname

	uta

	usename

	anonymous

	application_name

	hgvs-shell/0.4.0rc2.dev20+n97ead5bf0fed.d20150831

	client_addr

	162.217.73.242

	client_hostname

	invitae.static.monkeybrains.net

	client_port

	38318

	backend_start

	2015-08-31 22:58:26.411654+00

	query_start

	2015-08-31 22:58:30.669956+00

	state_change

	2015-08-31 22:58:30.673533+00

	waiting

	f

	state

	idle

	query

	select *
from tx_exon_aln_v
where tx_ac=’NM_170707.3’ and alt_ac=’NC_000001.10’ and alt_aln_method=’splign’
order by alt_start_i

Several of these merit discussion.

	application_name

	Upon connection using the UTA data provider, a string containing the
name of the python script and hgvs version are passed to the
postgresql server. The string typically looks like
hgvs-shell/0.4.0rc2.dev20+n97ead5bf0fed.d20150831. Clients may
override the application_name when calling connect().

	client_addr and client_hostname

	The source IP and hostname are available for current
connections. For most clients, this will mean identifying an
institution but not specific computers or individuals.

	query

	The current or most recently executed query is visible. When
accessed through the data provider, this field is limited to
Data Provider Queries.

Historical connection information

Although we do have historical logs for database connections, they
provide only date, time, and database connection. Currently, we do
not log queries, although we might choose to periodically log
certain queries for performance monitoring.

Contributing

hgvs is intended to be a community project. Contributions of source
code, test cases, and documentation are welcome!

This section describes development conventions and practices for the
hgvs project. The intention is to help developers get up-to-speed
quickly.

Highlights

	Development occurs in the default branch. (Release branches are
named for the major-minor release, e.g., 0.4.x.)

	Versioning follows Semantic Versioning [http://semver.org/].

	The code version is determined solely by the hg tags. This version
appears in the package name (e.g.,
hgvs-0.4.4-py2.py3-none-any.whl) and in the version returned by
hgvs.__version__. Updating to a specific version (e.g., hg
up -r 0.4.0) will get you exactly that version.

	All significant development must have an associated issue in hgvs
issues [https://github.com/biocommons/hgvs/issues]; create an issue if necessary. Other changes may have
have an issue. Please develop using a bookmark or branch named for
the issue, such as 44-normalization.

	Pull requests should be narrowly focused around a bug or feature.
Discrete commits with good log messages facilitate review. Consider
collapsing/squashing commits with hgvs rebase --collapse ... to
make the PR concise. Submit PRs against the default branch head (or
close to it).

	Abide by current code style. Use make reformat to reformat all
code with yapf [https://github.com/google/yapf] prior to submitting a PR.

	Email the hgvs-discuss [https://groups.google.com/forum/#!forum/hgvs-discuss] mailing list if you have questions.

	Test your code with make test before you submit a PR.

	Currently, only Python 2.7 is supported. Support for Python 3.5 is
slated for the next release
(#190 [https://github.com/biocommons/hgvs/issues/190/]).

A Quick Contribution Example

	Fork the project at https://github.com/biocommons/hgvs/

You will be able to make changes there and then submit your
contributions for inclusion into the biocommons repo.

	Clone the project locally with

$ hg clone https://github.com/<your_username>/hgvs

	Create a virtualenv (recommended)

$ mkvirtualenv hgvs

There are other ways to make python virtual environment. How you do
this isn’t important, but using a virtual environment is good
practice.

	Prepare your environment

$ make develop

The Makefile in hgvs wraps functionality in setup.py, and also
provides many useful rules. See make for more information.

	Make a branch (for significant changes)

If you expect to change multiple files, please work in a
branch. Please name the branch like 141-formatter-class.

	Code, code, code!

You probably want to test code with:

$ make test

See Local UTA and make for tips on accellerating testing.

	Reformat code

This command will reformat the entire package in-place.:

$ make reformat
$ hg commit -m 'fixes #141: implements Formatter class'

Be sure to commit changes afterward!

	Commit and push:

$ make test
$ hg push

	Submit a pull request at the hgvs package [https://github.com/biocommons/hgvs] web site.

Using a local/alternative UTA instance

	Install UTA from a PostgreSQL as described at in the UTA [https://github.com/biocommons/uta/] README.

	Specify an alternate UTA instance.

The easiest way to use a UTA instance other than the default is by
setting UTA_DB_URL. The format is
postgresql://<user>:<pass>@<host>/<db>/<schema>. For example:

postgresql://anonymous:anonymous@uta.biocommons.org/uta/uta_20140210

explicitly selects the public database, and

postgresql://localhost/uta/uta_20140210

selects a local instance. Developers can test connectivity like this:

$ UTA_DB_URL=postgresql://localhost/uta/uta_20140210 make test-quick

See hgvs/dataproviders/uta.py for current UTA database URLs.

Get Cozy with make

The hgvs package includes a GNU Makefile that aids nearly all
developer tasks. It subsumes much of the functionality in setup.py.
While using the Makefile isn’t required to develop, it is the official
way to invoke tools, tests, and other development features. Type
make for hgvs-specific help.

Some of the key targets are:

	develop

	Prepare the directory for local development.

	install

	Install hgvs (as with python setup.py install).

	test

	Run the default test suite (~4 minutes).

	test-quick

	Run the quick test suite (~35s) of most functionality.

	clean, cleaner, cleanest

	Remove extraneous files, leaving a directory in various states of
tidiness.

	docs

	Make the sphinx docs in docs/build/html/.

Code Style

The package coding style is based roughly on PEP8 [https://www.python.org/dev/peps/pep-0008/], with the following
changes:

column_limit = 120
spaces_before_comment = 4
split_before_named_assigns = True

These code conventions are uniformly enforce by yapf [https://github.com/google/yapf]. The entire code
base is periodically automatically reformatted for consistency.

Variables

The following code variable conventions are used for most of the hgvs
code base. They should be considered aspirations rather than reality or
policy. Understanding these conventions will help uses and developers
understand the code.

Note

A note on variable suffixes
If a particular variant type is expected, a suffix is often added to
variable names. e.g., var_c in a function argument list signifies
that a SequenceVariant object with type=’c’ is expected.

	hgvs*

	a string representing an HGVS variant name.

	var*

	a hgvs.variant.SequenceVariant object

	pos

	

	posedit

	

	hgvs_position

	

Release Process

hgvs uses a home-grown tool, clogger, to generate change logs.
This section documents the process. (Clogger will be released at some
point, but it is currently really only executable by Reece.)

clogger’s primary goal is to propose a preliminary changelog
based on commit messages between specified release tags. That
.clog file is a simple format like this:

clog format: 1; -*-outline-*-
* 0.4.1 (2015-09-14)
Changes since 0.4.0 (2015-09-09).
** Bug Fixes
*** fixes #274, #275: initialize normalizer with same alt_aln_method as AssemblyMapper [43e174d6f8af]
*** fixes #276: raise error when user attempts to map to/from c. with non-coding transcript [3f7b659f4f02]

.clog files should be edited for readability during the release
process and committed to the repo (in hgvs/doc/changelog/).

A Makefile in the same directory generates an .rst file from the
.clog. This file must also be committed to the repo. This file
becomes the release changelog.

Finally, releases are bundled by major.minor versions in a file like
0.4.rst (no patch level). That file must be edited to include the
new release and committed to the repo.

Specific Example – 0.4.3 release

The 0.4.x branch has two recent changes for the 0.4.3 release. Here’s
how the release was prepared:

hg up 0.4.x
hg tag 0.4.3cl

cd doc/changelog
make 0.4.3cl.clog
mv 0.4.3cl.clog 0.4.3.clog
#edit 0.4.3.clog for readability
make 0.4.3.rst
#edit 0.4.rst to add 0.4.3 to index

cd ../.. (hgvs top-level), then hg status should now look like:

M doc/changelog/0.4.rst
A doc/changelog/0.4.3.clog
A doc/changelog/0.4.3.rst

Check your work. Type make docs, then view build/sphinx/html/changelog/0.4.3.html.

Now we’re ready to finish up:

hg tag --remove 0.4.3cl
hg com -m 'added docs for 0.4.3 release'
hg tag 0.4.3
hg push
make upload # (builds distribution and uploads to pypi)

Getting Help

hgvs always works and has no bugs. Furthermore, its interface is
so easy to use that a manual is unnecessary.

Just kidding.

While hgvs is well-tested and has been used by many groups for several
years, bugs, unexpected behaviors, and usages questions occur.
Fortunately, there’s now a small community of people who can help.

If you need help, please read the following sources first. Then, if
you’ve still got a question, post to one of them.

If you have questions about the Variation Nomenclature
Recommendations [http://varnomen.hgvs.org/], consider posting your
questions to the HGVS Facebook page [https://www.facebook.com/HGVSmutnomen].

hgvs-discuss Mailing List/Group

For general questions, the best source of information is the
hgvs-discuss Google Group
(https://groups.google.com/forum/#!forum/hgvs-discuss). It is
publicly visible, but posting requires joining in order to control
spam. The mailing list is the preferred way to reach the hgvs
package authors. (Please do NOT send email directly to authors.)

Gitter Channel

We have a new gitter community at https://gitter.im/biocommons/hgvs.
There’s not much use yet, but there’s a chance that you could get
real-time replies there.

Bug Reports

If you think you’ve got a bug, please report it! Here are a few tips
to make it more likely that you get a useful reply:

	Use the command-line tool hgvs-shell that comes with hgvs to
prepare your bug report. Using hgvs-shell makes it easier for you
to report the bug and make it easier for developers to understand
it.

	Take the time to prepare a minimal example that demonstrates the
bug. You are unlikely to get a reply if you submit a report that
includes your own wrappers and tooling.

	Include the bug demonstration as text. A screenshot of a bug report
is not reproducible.

	Include the values of hgvs.__version__ and hgvs.hdp.url, and
whether you’re using seqrepo. (i.e., whether you specified
HGVS_SEQREPO_DIR)

	hgvs-shell in an upcoming release will provide much of the above
information for you, as shown below. Please use it.

	Include an explanation of the result you expected and why.

	Report the bug using github, which requires an account. If you
don’t have an account (and don’t want to create one), sending the
same information to the mailing list is acceptable.

$ hgvs-shell

##
hgvs-shell -- interactive hgvs
hgvs version: 1.1.3.dev11+ne7b6a1c3ec7a
data provider url: postgresql://anonymous:anonymous@uta.biocommons.org/uta/uta_20170117
schema_version: 1.1
data_version: uta_20170117
sequences source: remote (bioutils.seqfetcher)

The following variables are defined:
* hp -- hgvs parser
* hdp -- hgvs data provider
* vm -- VariantMapper
* am37 -- AssemblyMapper, GRCh37
* am38 -- AssemblyMapper, GRCh38
* hv -- hgvs Validator
* hn -- hgvs Normalizer

hgvs_g, hgvs_c, hgvs_p -- sample variants as hgvs strings
var_g, var_c, var_p -- sample variants, as parsed SequenceVariants

When submitting bug reports, include the version header shown above
and use these variables/variable names whenever possible.

In [1]:

Frequently Asked Questions

Alignments for my transcript are not available. What can I do?

The short answer is: not much.

In order to project a variant between genomic and transcript
coordinates, hgvs needs a sequence alignment. Sequence alignments
are obtained from the Universal Transcript Archive (UTA), a compendium
of transcripts and their genome alignments from multiple sources.
Data are loaded from snapshots; the loading process is currently
semi-automated and run irregularly.

UTA loads only high-quality alignments exactly as provided by the data
sources. If an alignment is not provided by a data source, or if it
fails filters recommended by NCBI, it won’t be in UTA (with a small
number of exceptions). Importantly, NCBI provides alignment data only
for current transcripts against current assemblies; historical data
are not available.

So, there are two common reasons that an alignment may not exist in
UTA:

	The transcript was obsoleted before UTA started in 2014, or existed
only between UTA snapshots.

	The transcript does not have any high-quality alignments.

If an alignment for a particular transcript-reference sequence pair
and for a particular alignment method are not available, an exception
like the following will be raised:

HGVSDataNotAvailableError: No alignments for NM_000018.2 in GRCh37 using splign

Currently, there is no way for users to provide their own alignments.

For example, UTA contains ten alignments for NM_000314 family of
transcripts for PTEN:

	transcript

	genome

	method

	NM_000314.4

	AC_000142.1

	splign

	NM_000314.4

	NC_000010.10

	blat

	NM_000314.4

	NC_000010.10

	splign

	NM_000314.4

	NC_018921.2

	splign

	NM_000314.4

	NG_007466.2

	splign

	NM_000314.5

	NC_000010.10

	splign

	NM_000314.6

	NC_000010.10

	blat

	NM_000314.6

	NC_000010.10

	splign

	NM_000314.6

	NC_000010.11

	splign

	NM_000314.6

	NW_013171807.1

	splign

A variant can be projected between any of the transcript, genome, and
method combinations, and no other combination.

Why do I get different results on the UCSC browser?

The UCSC Genome Browser uses alignments generated by BLAT, which gives
different results than the official alignments generated by NCBI using
splign. Although BLAT and splign typically agree, there are many
small differences in ambiguous alignments and even some substantial
differences in a small number of transcripts. In some cases, the
differences might cause a variant to be interpreted as coding using a
splign alignment and non-coding by a BLAT alignment, or vice
versa. Furthermore, one typically doesn’t know which alignment set was
used when publishing a variant. (Yes, that’s a hot mess.)

Why do I get different results with Mutalyzer?

Some transcript-genome alignments contain indels. hgvs is careful
to account for these indel discrepancies when projecting variants. In
contrast, Mutalyzer does not account for such discrepancies.
Therefore, the Mutalyzer results will be incorrect when projecting or
validating a variant that is downstream of the first indel. For
details and other examples, see
https://www.ncbi.nlm.nih.gov/pubmed/30129167.

Change Log

	1.4 Series
	1.4.0 (2020-01-26)

	1.3 Series
	1.3.0 (2019-05-12)

	1.2 Series
	1.2.5 (2019-02-01)

	1.2.4 (2018-09-28)

	1.2.3 (2018-09-05)

	1.2.2 (2018-07-23)

	1.2.1 (2018-07-21)

	1.2.0 (2018-07-14)

	1.1 Series
	1.1.3 (2018-07-01)

	1.1.2 (2018-03-31)

	1.1.1 (2017-11-24)

	1.1.0 (2017-07-11)

	1.0 Series
	1.0.0 (2017-04-08)

	0.4 Series
	0.4.14 (2017-05-19)

	0.4.13 (2016-12-12)

	0.4.12 (2016-12-06)

	0.4.11 (2016-09-15)

	0.4.10 (2016-08-16)

	0.4.9 (2016-08-01)

	0.4.8 (2016-07-19)

	0.4.7 (2016-01-23)

	0.4.6 (2016-06-27)

	0.4.5 (2016-03-31)

	0.4.4 (2015-12-15)

	0.4.3 (2015-12-04)

	0.4.2 (2015-09-30)

	0.4.1 (2015-09-14)

	0.4.0 (2015-09-09)

	0.3 Series
	0.3.7 (2015-06-23)

	0.3.6 (2015-06-02)

	0.3.5 (2015-05-19)

	0.3.4 (unreleased)

	0.3.3 (2014-08-28)

	0.3.2 (2014-07-12)

	0.3.1 (2014-07-12)

	0.3.0 (2014-06-19)

	0.2 Series
	0.2.2 (2014-06-12)

	0.2.1 (2014-06-11)

	0.2.0 (2014-03-09)

	0.1 Series
	0.1.11 (2014-03-05)

	0.1.9 (2014-03-05)

	0.1.8 (2014-01-22)

	0.1.7 (2014-01-22)

	0.1.6 (2014-01-11)

	0.1.5 (2014-01-11)

	0.1.4 (2014-01-11)

	0.1.3 (2014-01-11)

	0.1.2 (2014-01-05)

	0.1.1 (2014-01-03)

	0.1.0 (2013-12-30)

	0.0 Series
	0.0.9 (2013-12-16)

	0.0.7 (2013-10-11)

	0.0.6 (2013-10-11)

	0.0.5 (2013-10-11)

	0.0.4 (2013-10-11)

	0.0.3 (2013-10-10)

	0.0.2 (2013-09-20)

	0.0.1 (2014-08-01)

1.4 Series

Warning

This is the first version of hgvs that works only on Python 3.6+.
It will not work on Python 2.7. Prior versions of hgvs will not be
updated. See
[Migrating-to-Python-3.6](https://github.com/biocommons/org/wiki/Migrating-to-Python-3.6).

	1.4.0 (2020-01-26)

1.4.0 (2020-01-26)

Changes since 1.3.0 (2019-05-15).

Special Attention

	Closes #552 [https://github.com/biocommons/hgvs/issues/552/]: Drop support for Python 2.7 [bc939c0 [https://github.com/biocommons/hgvs/commit/bc939c0]] (Reece Hart)

	Remove Biopython dependency (#527 [https://github.com/biocommons/hgvs/issues/527/]) [3a74978 [https://github.com/biocommons/hgvs/commit/3a74978]] (Alan Rubin)

	Removed enum34 dependency [e93a48c [https://github.com/biocommons/hgvs/commit/e93a48c]] (Reece Hart)

1.3 Series

Warning

Python 2.7 versions of hgvs are now obsolete. The hgvs 1.3 series
will not receive further updates. See
[Migrating-to-Python-3.6](https://github.com/biocommons/org/wiki/Migrating-to-Python-3.6).

	1.3.0 (2019-05-12)

1.3.0 (2019-05-12)

	pin biocommons dependencies to versions that support 2.7 and 3.5+ [25bc21f [https://github.com/biocommons/hgvs/commit/25bc21f]]

Changes since 1.2.5.post1 (2019-02-01).

Bug Fixes

	Fixes #474 [https://github.com/biocommons/hgvs/issues/474/], fixes #492 [https://github.com/biocommons/hgvs/issues/492/]: correct for stop gain located at termination codon (#518 [https://github.com/biocommons/hgvs/issues/518/])

	Fixes #501 [https://github.com/biocommons/hgvs/issues/501/]: Add c_to_p support for inversion (#502 [https://github.com/biocommons/hgvs/issues/502/])

New Features

	Closes #243 [https://github.com/biocommons/hgvs/issues/243/]: implement hgvs-to-vcf translation

	Closes #499 [https://github.com/biocommons/hgvs/issues/499/]: recognize whole-gene dup (c.-i_*j) and assume does not affect protein sequence [dc48d5d [https://github.com/biocommons/hgvs/commit/dc48d5d]]

	Closes #511 [https://github.com/biocommons/hgvs/issues/511/]: Update misc/experimental/vcf-add-hgvs to support newer bioutils and pyvcf [88e01d4 [https://github.com/biocommons/hgvs/commit/88e01d4]]

	Closes #257 [https://github.com/biocommons/hgvs/issues/257/]: Support parsing gene names and optional addition during projection

	Closes #557 [https://github.com/biocommons/hgvs/issues/557/]: Add option to format translation initiation codon variants as p.Met1?

p.Met1? is the new default [2cd86b9]
* Added parse shorthand for parse_hgvs_variant [69c2aeb [https://github.com/biocommons/hgvs/commit/69c2aeb]]
* Added t_to_p in AssemblyMapper [8f9b69b [https://github.com/biocommons/hgvs/commit/8f9b69b]]
* hgvs.easy: Provide single-file import with usable defaults and functional forms for common commands (#516 [https://github.com/biocommons/hgvs/issues/516/])
* Updated hgvs-guess-plausible-transcripts [4e2a9d0 [https://github.com/biocommons/hgvs/commit/4e2a9d0]]
* Updated default uta to uta_20180821 [e8206d1 [https://github.com/biocommons/hgvs/commit/e8206d1]]

Internal, Developer, and Experimental Changes

	Closes #544 [https://github.com/biocommons/hgvs/issues/544/]: Update installation docs [ae3064c [https://github.com/biocommons/hgvs/commit/ae3064c]]

	Closes #500 [https://github.com/biocommons/hgvs/issues/500/]: unpinned setuptools_scm [bae7e4a [https://github.com/biocommons/hgvs/commit/bae7e4a]]

	Closes #494 [https://github.com/biocommons/hgvs/issues/494/]: Removed useless warning (Closing connection; future mapping and validation will fail) [dfa0c52 [https://github.com/biocommons/hgvs/commit/dfa0c52]]

	Added Python syntax highlighting (#550 [https://github.com/biocommons/hgvs/issues/550/])

	Added doctests for hgvs/utils/norm.py (#548 [https://github.com/biocommons/hgvs/issues/548/])

	Expose seqrepo reference in SeqFetcher instance [3ab49e9 [https://github.com/biocommons/hgvs/commit/3ab49e9]]

	Fix typo in docs (#554 [https://github.com/biocommons/hgvs/issues/554/]) [5b25b4f [https://github.com/biocommons/hgvs/commit/5b25b4f]]

	When re-raising exception from sequencing fetching, including fetcher implementation and underlying exception message [42859e4 [https://github.com/biocommons/hgvs/commit/42859e4]]

	add 3.7 support to Makefile [3a89a82 [https://github.com/biocommons/hgvs/commit/3a89a82]]

	added link to hgvs notebooks on mybinder.org [3077d3c [https://github.com/biocommons/hgvs/commit/3077d3c]]

	added notebook of hdp output examples [4fb9617 [https://github.com/biocommons/hgvs/commit/4fb9617]]

	don’t warn about pickle.load() [f052d03 [https://github.com/biocommons/hgvs/commit/f052d03]]

	emit CRITICAL log message on Python < 3.6 [b7f320a [https://github.com/biocommons/hgvs/commit/b7f320a]]

	expose seqrepo reference in SeqFetcher instance [3ab49e9 [https://github.com/biocommons/hgvs/commit/3ab49e9]]

	fix regexp that didn’t use a raw (r”“) string (DeepSource) [f6126f6 [https://github.com/biocommons/hgvs/commit/f6126f6]]

	fix: expected results in quick_start.rst doctest were unsorted [63d5e74 [https://github.com/biocommons/hgvs/commit/63d5e74]]

	fixed incompatibilities with newer version of pytest [ee9426f [https://github.com/biocommons/hgvs/commit/ee9426f]]

	fixed redundant exception imports (DeepSource) [dc6277d [https://github.com/biocommons/hgvs/commit/dc6277d]]

	minor code cleanup based on pylint testing [927864d [https://github.com/biocommons/hgvs/commit/927864d]]

	ooops… used f string in 2.7 version :-([5c3492a [https://github.com/biocommons/hgvs/commit/5c3492a]]

	remove del sequence from variants being tested (and remove re module DeprecationWarnings); and fix latent bugs in tests [2cb053d [https://github.com/biocommons/hgvs/commit/2cb053d]]

	remove relative path in pkg_resources.resource_filename() to eliminate warning about future failure [19a16d5 [https://github.com/biocommons/hgvs/commit/19a16d5]]

	updated pytest mark configuration [d922495 [https://github.com/biocommons/hgvs/commit/d922495]]

1.2 Series

Warning

Python 2.7 versions of hgvs are now deprecated and will become
unsupported on April 1, 2019. See
[Migrating-to-Python-3.6](https://github.com/biocommons/org/wiki/Migrating-to-Python-3.6).

	1.2.5 (2019-02-01)

	1.2.4 (2018-09-28)

	1.2.3 (2018-09-05)

	1.2.2 (2018-07-23)

	1.2.1 (2018-07-21)

	1.2.0 (2018-07-14)

1.2.5 (2019-02-01)

Changes since 1.2.4 (2018-09-28).

Special Attention

Python 2.7 versions of hgvs are now deprecated and will become
unsupported on April 1, 2019. See
Migrating-to-Python-3.6 [https://github.com/biocommons/org/wiki/Migrating-to-Python-3.6].

Bug Fixes

	Fixes #546 [https://github.com/biocommons/hgvs/issues/546/]: relevant transcripts should be wholly within transcript bounds [86412924353b [https://github.com/biocommons/hgvs/commit/86412924353b]]

Internal and Developer Changes

	fix testing bug that caused py3.5 env to be undefined on travis [5146b07 [https://github.com/biocommons/hgvs/commit/5146b07]]

1.2.4 (2018-09-28)

Changes since 1.2.3 (2018-09-04).

Bug Fixes

	Closes #525 [https://github.com/biocommons/hgvs/issues/525/]: fix c_to_p bug with insertion of in-phase Ter (credit: @ianfab) [d40a71a6548b [https://github.com/biocommons/hgvs/commit/d40a71a6548b]]

	backported test for #525 [https://github.com/biocommons/hgvs/issues/525/] to 1.2 branch [cb769e9591d5 [https://github.com/biocommons/hgvs/commit/cb769e9591d5]]

Other Changes

	added missing changelog files for 1.2.3 [5d2cf1c [https://github.com/biocommons/hgvs/commit/5d2cf1c]]

1.2.3 (2018-09-05)

Changes since 1.2.2 (2018-08-09).

Bug Fixes

	Fixes #474 [https://github.com/biocommons/hgvs/issues/474/], fixes #492 [https://github.com/biocommons/hgvs/issues/492/]: correct for stop gain located at termination codon

1.2.2 (2018-07-23)

Changes since 1.2.1 (2018-07-21).

Bug Fixes

	Closes #501 [https://github.com/biocommons/hgvs/issues/501/]: Add c_to_p support for inversion (#502 [https://github.com/biocommons/hgvs/issues/502/])

1.2.1 (2018-07-21)

Changes since 1.2.0 (2018-07-15).

Bug Fixes

	Fixes #499 [https://github.com/biocommons/hgvs/issues/499/]: recognize whole-gene dup (c.-i_*j) and assume does not affect protein sequence [dc48d5d [https://github.com/biocommons/hgvs/commit/dc48d5d]]

1.2.0 (2018-07-14)

Changes since 1.1.3 (2018-07-01).

Special Attention

This release contains a significant improvement in the accuracy of
projecting variants in the vicinity of genome-transcript alignment
gaps. Previously, hgvs handled only a limited number of cases. The
new AlignmentMapper now handles all cases identified for projecting
substitution, insertion, and deletion variants in the context of
substituion, insertion, and deletion alignment discrepancies. [Credit:
Meng Wang]

Deprecations and Removals

AlignmentMapper replaces IntervalMapper and TranscriptMapper. The
latter are now deprecated and will be removed in the next release.

Bug Fixes

	Fixes #497 [https://github.com/biocommons/hgvs/issues/497/]: Honor normalize switch in AssemblyMapper [61d363e [https://github.com/biocommons/hgvs/commit/61d363e]]

New Features

	Closes #208 [https://github.com/biocommons/hgvs/issues/208/]: Rewrite coordination mapping to provide better support for projecting variants in the vicinity of transcript-alignment gaps.

1.1 Series

	1.1.3 (2018-07-01)

	1.1.2 (2018-03-31)

	1.1.1 (2017-11-24)

	1.1.0 (2017-07-11)

1.1.3 (2018-07-01)

Changes since 1.1.2 (2018-03-31).

Bug Fixes

	Fixes #490 [https://github.com/biocommons/hgvs/issues/490/]: raises a NotImplementedError when a coding sequence is not divisible by 3 (#491 [https://github.com/biocommons/hgvs/issues/491/]) [35d72a577df5 [https://github.com/biocommons/hgvs/commit/35d72a577df5]]

Other Changes

	added protein translation to README (how did we not have c_to_p there?!) [e7b6a1c3ec7a [https://github.com/biocommons/hgvs/commit/e7b6a1c3ec7a]]

	switch to psycopg2-binary [9c1ec59a93ec [https://github.com/biocommons/hgvs/commit/9c1ec59a93ec]]

Internal and Developer Changes

	added misc/proj-at-disc/ [1bdf4c40c750 [https://github.com/biocommons/hgvs/commit/1bdf4c40c750]]

	added jupyter to etc/develop.reqs [9bdef16c24a2 [https://github.com/biocommons/hgvs/commit/9bdef16c24a2]]

	update venv rules in Makefile [296feb69b7c5 [https://github.com/biocommons/hgvs/commit/296feb69b7c5]]

	update pypi link to new pypi.org site [76beb3424615 [https://github.com/biocommons/hgvs/commit/76beb3424615]]

1.1.2 (2018-03-31)

Changes since 1.1.1 (2017-11-24).

Bug Fixes

	Fix #483 [https://github.com/biocommons/hgvs/issues/483/]: fix bug when normalizing at first and last base (#484 [https://github.com/biocommons/hgvs/issues/484/])

	Fix #480 [https://github.com/biocommons/hgvs/issues/480/]: fix validation of AAPosition (#485 [https://github.com/biocommons/hgvs/issues/485/])

	Fix #431 [https://github.com/biocommons/hgvs/issues/431/]: fix length_change for ident var (#486 [https://github.com/biocommons/hgvs/issues/486/]) [5e59104cc739 [https://github.com/biocommons/hgvs/commit/5e59104cc739]]

	Fix #476 [https://github.com/biocommons/hgvs/issues/476/]: fix c_to_p for dup at the end of cds (#478 [https://github.com/biocommons/hgvs/issues/478/])

	Fix #488 [https://github.com/biocommons/hgvs/issues/488/]: unpin attrs package version by refactoring reftranscriptdata and altseqbuilder to not use closures or attrs [0e1d9f137642 [https://github.com/biocommons/hgvs/commit/0e1d9f137642]]

Internal and Developer Changes

	drop py3.5 from tox testing (Python 3.5 devel not available on Ubuntu 17.10) [3d311f8d2b26 [https://github.com/biocommons/hgvs/commit/3d311f8d2b26]]

	omit coverage for utility and external source files [23b8b55eee87 [https://github.com/biocommons/hgvs/commit/23b8b55eee87]]

	pin setuptools_scm to 1.11.1, the last version known to work with hgvs [51ad9ad4b07a [https://github.com/biocommons/hgvs/commit/51ad9ad4b07a]]

1.1.1 (2017-11-24)

Changes since 1.1.0.post1 (2017-07-11).

Bug Fixes

	Fixes #453 [https://github.com/biocommons/hgvs/issues/453/]: Fix get_tgt_length for m. var in normalizer [f7ec2a7a5037 [https://github.com/biocommons/hgvs/commit/f7ec2a7a5037]]

	Fixes #459 [https://github.com/biocommons/hgvs/issues/459/]: fix bug when raising exception on fetch_seq failure [650a97c715dc [https://github.com/biocommons/hgvs/commit/650a97c715dc]]

	Fixes #466 [https://github.com/biocommons/hgvs/issues/466/]: Wrong mapping result of identity variant without ref given (#468 [https://github.com/biocommons/hgvs/issues/468/])

	Fixes #464 [https://github.com/biocommons/hgvs/issues/464/]: Make start and end position independent when start and end are equal [682f730bcfdb [https://github.com/biocommons/hgvs/commit/682f730bcfdb]]

Other Changes

	Fixes #473 [https://github.com/biocommons/hgvs/issues/473/]: Pin attrs <17.3.0 due to ‘ValueError: Cell is empty’ [0ac8cffd262d [https://github.com/biocommons/hgvs/commit/0ac8cffd262d]]

Internal and Developer Changes

	tox now tests 2.7, 3.5 and 3.6

	catch KeyError from SeqFetcher (API change in seqfetcher) [da25364c6607 [https://github.com/biocommons/hgvs/commit/da25364c6607]]

	Invitae Only: Adds a new ncbi dataprovider that has been modeled on the uta dataprovider. (#472 [https://github.com/biocommons/hgvs/issues/472/]) [63b9c4a334eb [https://github.com/biocommons/hgvs/commit/63b9c4a334eb]]

1.1.0 (2017-07-11)

Changes since 1.0.0.post3 (2017-04-11).

Special Attention

This is the first version of hgvs that supports Python 3 (yay!).
Continuous integration tests are now performed against Python 2.7,
3.5, and 3.6. Please report any issues.

Bug Fixes

	Closed #445 [https://github.com/biocommons/hgvs/issues/445/]: Fix normalization erros at start and end of transcript [56ed82a62f57 [https://github.com/biocommons/hgvs/commit/56ed82a62f57]]

	Closed #444 [https://github.com/biocommons/hgvs/issues/444/]: Fix normalizing var near the end of transcript

New Features

	Closed #424 [https://github.com/biocommons/hgvs/issues/424/], #430 [https://github.com/biocommons/hgvs/issues/430/]: make no-change sequence optional for parsing, and do not include sequence by default on formatting [25fcf7a96158 [https://github.com/biocommons/hgvs/commit/25fcf7a96158]]

	Closed #427 [https://github.com/biocommons/hgvs/issues/427/]: Ensure c. coordinate within CDS bound

	Closed #439 [https://github.com/biocommons/hgvs/issues/439/]: Add method to explicitly close database connections [9f796476ba22 [https://github.com/biocommons/hgvs/commit/9f796476ba22]]

	Handle the cds_{start,end} is None case explicitly, since None is not comparable to ints in python 3+. [13de480978de [https://github.com/biocommons/hgvs/commit/13de480978de]]

	Merged Python 3 support [deb08ea1f6fa [https://github.com/biocommons/hgvs/commit/deb08ea1f6fa]]. Big thanks to Lucas Wiman and Counsyl for contributing Python 3 support!

Other Changes

	explicitly set and test _conn in UTA_postgresql.__init__. [faf5f37b77cd [https://github.com/biocommons/hgvs/commit/faf5f37b77cd]] Avoids sporadic errors during runtime shutdown in Python 3 (presumably due to non-deterministic object destruction order)

Internal and Developer Changes

	Added AssemblyMapper._fetch_TranscriptMapper() convenience method [cd2f21f2f8b3 [https://github.com/biocommons/hgvs/commit/cd2f21f2f8b3]]

	Closed #343 [https://github.com/biocommons/hgvs/issues/343/]: Migrate from nose to pytest+tox [@lucaswiman] [b2263aed8ca0 [https://github.com/biocommons/hgvs/commit/b2263aed8ca0]]. hgvs is now tested with tox in Python 2.7 and 3.5 environments.

	Reactivate CI testing with travis (previously drone.io) [ef23089c2c06 [https://github.com/biocommons/hgvs/commit/ef23089c2c06]]. master is currently testing on all commits https://travis-ci.org/biocommons/hgvs.png?branch=master

1.0 Series

	1.0.0 (2017-04-08)

1.0.0 (2017-04-08)

Changes since 0.4.0 (2015-09-09).

This is a major release of the hgvs package that includes new features
and behavior changes. Some client code may require minor
modification. (Note: Previously, we had tentatively called this
release 0.5.0. The magnitude of the changes and the desire to migrate
to public API versioning led us release as 1.0.0.)

See Installing hgvs for installation instructions.

Major Features and Changes

This section highlights import behavior or interface changes relative
to the 0.4.x series. Code modifications are likely for most of the
features listed below.

★ EasyVariantMapper renamed to AssemblyMapper, now with GRCh38 and
PAR support. EasyVariantMapper was renamed to AssemblyMapper to
better reflect its role. AssemblyMapper defaults to GRCh38.
Transcripts in pseudoautosomal regions have alignments to X and Y.
Previously, EVM would refuse to guess which alignment to use and raise
an exception. AssemblyMapper has a new argument, in_par_assume,
which enables callers to prefer X or Y alignments.

★ VariantMapper validates variants before mapping. Several bug
reports resulted from attempting to project invalid variants, such as
as variants with insertions between non-adjacent nucleotides. These
generated exceptions or unexpected results. Intrinsic validation is
now peformed before mapping and normalization, and callers may wish to
catch these.

★ Fully local installations – no network access required.
hgvs requires access to transcripts and sequences for most
operations. By default, hgvs will use public remote resources at
runtime, which incurs significant latency and, in principle, presents
a minor privacy concern. While UTA has always been available for
local installation, the more significant delay was in sequence lookup.
A new package, SeqRepo [https://github.com/biocommons/seqrepo/],
provides a local sequence database that is synchronized with UTA.
When used together, these packages completely obviate network
connectivity and improve speed by approximately 50x.

★ hgvs transitions to public API versioning conventions. By
transitioning from major version 0 (“initial development”) to 1
(“public API”), we are indicating that the API is expected to be
stable. In practice, this change will mean that x.y.z versions will
clearly distinguish bug fix releases (increment z),
backward-compatible feature additions (increment y), and API
incompatible changes (increment x). See Semantic Versioning [http://semver.org/] for more information.

★ Changes in p. formatting to better conform to current varnomen
recommendations. Inferred changes with unknown p. effects are now
represented with p.? rather than p.(?) (#393 [https://github.com/biocommons/hgvs/issues/393/]). In addition,
silent SNV mutations now include the amino acid, as in
NP_000050.2:p.Lys2597= rather than NP_000050.2:p.(=) (#317 [https://github.com/biocommons/hgvs/issues/317/]). Both
changes improve conformance with current varnome recommendations [http://varnomen.org/].

★ By default, do not show reference sequence in dels and dups.
For example, NM_000059.3:c.22_23delAAinsT would be shown as
NM_000059.3:c.22_23delinsT. Users may configure max_ref_length
(default 0) order to change this behavior (#404 [https://github.com/biocommons/hgvs/issues/404/]).

★ BaseOffsetPosition datums now use enums, defined in hgvs.enums.
For example, previous hgvs.location.SEQ_START must be replaced with
hgvs.enums.Datum.SEQ_START (#396 [https://github.com/biocommons/hgvs/issues/396/]).

★ Unknown protein effect are now internally represented with
`var.posedit=None`. This case is printed as NP_01234.5:p.? (#412 [https://github.com/biocommons/hgvs/issues/412/]).

Deprecations and Removals

	#349 [https://github.com/biocommons/hgvs/issues/349/]: drop support for dupN [0dbe440 [https://github.com/biocommons/hgvs/commit/0dbe440]]

	#360 [https://github.com/biocommons/hgvs/issues/360/]: HGVSValidationError removed; used HGVSInvalidVariantError instead.

Bug Fixes

	#284 [https://github.com/biocommons/hgvs/issues/284/]: validation fails for g variants [512b882 [https://github.com/biocommons/hgvs/commit/512b882]]

	#292 [https://github.com/biocommons/hgvs/issues/292/]: Fix bug in validator when validating m. variants and add tests [12d9b48 [https://github.com/biocommons/hgvs/commit/12d9b48]]

	#308 [https://github.com/biocommons/hgvs/issues/308/]: validation across CDS start and CDS end boundaries [ac066ee [https://github.com/biocommons/hgvs/commit/ac066ee]], [8c8db03 [https://github.com/biocommons/hgvs/commit/8c8db03]]

	#346 [https://github.com/biocommons/hgvs/issues/346/]: ensure that alignment starts at transcript position 0 [3af24b3 [https://github.com/biocommons/hgvs/commit/3af24b3]], [9f29c87 [https://github.com/biocommons/hgvs/commit/9f29c87]]

	#381 [https://github.com/biocommons/hgvs/issues/381/]: fix bug attempting to normalize p. variants; add issue test (test_issues.py) [834bed9 [https://github.com/biocommons/hgvs/commit/834bed9]]

	#393 [https://github.com/biocommons/hgvs/issues/393/]: fix inconsistent representation of unknown p. effect when inferred by c_to_p [3f1ac48 [https://github.com/biocommons/hgvs/commit/3f1ac48]]

	#409 [https://github.com/biocommons/hgvs/issues/409/]: Fix bug in normalizer when normalizing ident variant that is written as delins [94607ecc30da [https://github.com/biocommons/hgvs/commit/94607ecc30da]]

	#415 [https://github.com/biocommons/hgvs/issues/415/]: Limit assembly mapper to NC accessions [6056fd4414df [https://github.com/biocommons/hgvs/commit/6056fd4414df]]

New Features

	#105 [https://github.com/biocommons/hgvs/issues/105/]: configurable formatting [c8b9fd1 [https://github.com/biocommons/hgvs/commit/c8b9fd1]]

	#249 [https://github.com/biocommons/hgvs/issues/249/]: Move intrinsic validation to models

	#253 [https://github.com/biocommons/hgvs/issues/253/]: Add p. validation support [3d3b9da [https://github.com/biocommons/hgvs/commit/3d3b9da]], [ba943ae [https://github.com/biocommons/hgvs/commit/ba943ae]]

	#256 [https://github.com/biocommons/hgvs/issues/256/]: rename EasyVariantMapper to AssemblyMapper to better indicate functionality [d6697d6 [https://github.com/biocommons/hgvs/commit/d6697d6]]

	#258 [https://github.com/biocommons/hgvs/issues/258/], #330 [https://github.com/biocommons/hgvs/issues/330/], #342 [https://github.com/biocommons/hgvs/issues/342/]: ensure that start and end datums are compatible [247d8bf [https://github.com/biocommons/hgvs/commit/247d8bf]]

	#260 [https://github.com/biocommons/hgvs/issues/260/], #322 [https://github.com/biocommons/hgvs/issues/322/]: added tests to verify that exceptions are raised when mapping invalid variants [ac37ae0 [https://github.com/biocommons/hgvs/commit/ac37ae0]]

	#270 [https://github.com/biocommons/hgvs/issues/270/]: add is_intronic method to BaseOffsetPosition [4e40866 [https://github.com/biocommons/hgvs/commit/4e40866]]

	#282 [https://github.com/biocommons/hgvs/issues/282/]: preserve position in “identity” variants (e.g., norm(c.123A>A) => c.123= rather than c.=) [cc523ed [https://github.com/biocommons/hgvs/commit/cc523ed]]

	#295 [https://github.com/biocommons/hgvs/issues/295/]: raise exception when validating deletion length for intronic variants [4575ed8 [https://github.com/biocommons/hgvs/commit/4575ed8]]

	#309 [https://github.com/biocommons/hgvs/issues/309/]: make errors more informative when coordinate is outside sequence bounds [d667d8b [https://github.com/biocommons/hgvs/commit/d667d8b]], [f4cd048 [https://github.com/biocommons/hgvs/commit/f4cd048]]

	#314 [https://github.com/biocommons/hgvs/issues/314/]: support parsing identity variants [9116c72 [https://github.com/biocommons/hgvs/commit/9116c72]]

	#315 [https://github.com/biocommons/hgvs/issues/315/]: Validate accession type pairs [be90d50 [https://github.com/biocommons/hgvs/commit/be90d50]]

	#316 [https://github.com/biocommons/hgvs/issues/316/]: provide generalized transcript-to-genome projects to handle coding and non-coding transcripts transparently [26006c7 [https://github.com/biocommons/hgvs/commit/26006c7]]

	#317 [https://github.com/biocommons/hgvs/issues/317/]: Output silent p. variants according to HGVS recommendations [4babbb5 [https://github.com/biocommons/hgvs/commit/4babbb5]]

	#319 [https://github.com/biocommons/hgvs/issues/319/]: added PosEdit.length_change() method [c191567 [https://github.com/biocommons/hgvs/commit/c191567]], [c71a48b [https://github.com/biocommons/hgvs/commit/c71a48b]], [c70fded [https://github.com/biocommons/hgvs/commit/c70fded]]

	#326 [https://github.com/biocommons/hgvs/issues/326/]: provide special handling for disambiguating alignments in pseudoautosomal regions [acc560e [https://github.com/biocommons/hgvs/commit/acc560e]]

	#330 [https://github.com/biocommons/hgvs/issues/330/]: datum-matching [e05674b [https://github.com/biocommons/hgvs/commit/e05674b]], [461ccd7 [https://github.com/biocommons/hgvs/commit/461ccd7]]

	#336 [https://github.com/biocommons/hgvs/issues/336/]: add hgvs-shell as excutable for exploration, debugging, bug submission [f6b6c3c [https://github.com/biocommons/hgvs/commit/f6b6c3c]]

	#356 [https://github.com/biocommons/hgvs/issues/356/]: add position comparision operators [4f7f7e4 [https://github.com/biocommons/hgvs/commit/4f7f7e4]]

	#365 [https://github.com/biocommons/hgvs/issues/365/]: graded validation

	#366 [https://github.com/biocommons/hgvs/issues/366/]: move validation to variantmapper

	#372 [https://github.com/biocommons/hgvs/issues/372/]: rename hgvs/variant.py to hgvs/sequencevariant.py [2f69d65 [https://github.com/biocommons/hgvs/commit/2f69d65]], [ad604fd [https://github.com/biocommons/hgvs/commit/ad604fd]]

	#379 [https://github.com/biocommons/hgvs/issues/379/]: move replace_reference to variantmapper (from evm) [c0f4be1 [https://github.com/biocommons/hgvs/commit/c0f4be1]]

	#386 [https://github.com/biocommons/hgvs/issues/386/]: reject discontiguous alignments [ea2527c [https://github.com/biocommons/hgvs/commit/ea2527c]]

	#391 [https://github.com/biocommons/hgvs/issues/391/]: Attempt reconnection if db connection is lost [2aef5fac3a61 [https://github.com/biocommons/hgvs/commit/2aef5fac3a61]]

	#399 [https://github.com/biocommons/hgvs/issues/399/]: validators should raise only HGVSInvalidVariantError exceptions

	#404 [https://github.com/biocommons/hgvs/issues/404/]: Implement max_ref_length in formatter and don’t show reference sequence by default

Other Changes

	#276 [https://github.com/biocommons/hgvs/issues/276/]: raise error when user attempts to map to/from c. with non-coding transcript [aaa0ff5 [https://github.com/biocommons/hgvs/commit/aaa0ff5]]

	#363 [https://github.com/biocommons/hgvs/issues/363/]: update railroad diagram [3e23e10 [https://github.com/biocommons/hgvs/commit/3e23e10]]

Internal and Developer Changes

	#236 [https://github.com/biocommons/hgvs/issues/236/]: migrate from built-in seqfetcher to bioutils seqfetcher [5e9a951 [https://github.com/biocommons/hgvs/commit/5e9a951]]

	#237 [https://github.com/biocommons/hgvs/issues/237/]: Mock testing data; dropped unmaintained sqlite-based tests

	#287 [https://github.com/biocommons/hgvs/issues/287/]: ensure that modules are also getting doctested (continues #287 [https://github.com/biocommons/hgvs/issues/287/]) [3cbe93a [https://github.com/biocommons/hgvs/commit/3cbe93a]]

	#347 [https://github.com/biocommons/hgvs/issues/347/]: Replace recordtype with attrs

	#395 [https://github.com/biocommons/hgvs/issues/395/]: get ThreadedConnectionPool sizes from config [a2a216c [https://github.com/biocommons/hgvs/commit/a2a216c]]

	#397 [https://github.com/biocommons/hgvs/issues/397/]: use hgvs.config for VariantMapper.__init__() [154cf5e [https://github.com/biocommons/hgvs/commit/154cf5e]]

	#400 [https://github.com/biocommons/hgvs/issues/400/]: make hdp cache mode (for testing) settable via HGVS_CACHE_MODE environment variable [09303c7 [https://github.com/biocommons/hgvs/commit/09303c7]]

	removed sqlite-based uta dataprovider; updated reqs in etc [e8c9d8d85d35 [https://github.com/biocommons/hgvs/commit/e8c9d8d85d35]]

0.4 Series

	0.4.14 (2017-05-19)

	0.4.13 (2016-12-12)

	0.4.12 (2016-12-06)

	0.4.11 (2016-09-15)

	0.4.10 (2016-08-16)

	0.4.9 (2016-08-01)

	0.4.8 (2016-07-19)

	0.4.7 (2016-01-23)

	0.4.6 (2016-06-27)

	0.4.5 (2016-03-31)

	0.4.4 (2015-12-15)

	0.4.3 (2015-12-04)

	0.4.2 (2015-09-30)

	0.4.1 (2015-09-14)

	0.4.0 (2015-09-09)

0.4.14 (2017-05-19)

Changes since 0.4.13 (2016-12-12).

New Features

	Closed #439 [https://github.com/biocommons/hgvs/issues/439/]: Add method to explicitly close database connections [BROKEN: 5a876fd2d1ec [https://github.com/biocommons/hgvs/commit/5a876fd2d1ec]]

0.4.13 (2016-12-12)

Changes since 0.4.12 (2016-12-06).

Bug Fixes

	closes #390 [https://github.com/biocommons/hgvs/issues/390/]: fix missing HGVSError import in variantmapper [BROKEN: 9e3bee72a349 [https://github.com/biocommons/hgvs/commit/9e3bee72a349]]

0.4.12 (2016-12-06)

Changes since 0.4.11 (2016-09-15).

Bug Fixes

	#386 [https://github.com/biocommons/hgvs/issues/386/]: reject discontiguous alignments [BROKEN: 839a6fc36c7d [https://github.com/biocommons/hgvs/commit/839a6fc36c7d]]

Other Changes

	Minor typo corrections on quick_start.rst [BROKEN: 49bb4ac246f1 [https://github.com/biocommons/hgvs/commit/49bb4ac246f1]] (PR #53 [https://github.com/biocommons/hgvs/issues/53/] from kmcallenberg)

0.4.11 (2016-09-15)

Changes since 0.4.10 (2016-09-13).

Other Changes

	fixed #357 [https://github.com/biocommons/hgvs/issues/357/]: reenable parsing of sequence with inversion (backed out #340 [https://github.com/biocommons/hgvs/issues/340/]) [BROKEN: 881c58dda474 [https://github.com/biocommons/hgvs/commit/881c58dda474]]

0.4.10 (2016-08-16)

Changes since 0.4.9 (2016-08-01).

Bug Fixes

	fixes #336 [https://github.com/biocommons/hgvs/issues/336/]: add hgvs-shell as excutable for exploration, debugging, bug submission [BROKEN: 8ae7f072abc1 [https://github.com/biocommons/hgvs/commit/8ae7f072abc1]]

	fixes #346 [https://github.com/biocommons/hgvs/issues/346/]: pushed alignment validation into dataprovider get_tx_exons() to cover use in normalizer [BROKEN: 0bc61059562c [https://github.com/biocommons/hgvs/commit/0bc61059562c]]

Other Changes

	closes #352 [https://github.com/biocommons/hgvs/issues/352/]: use https for seqfetcher [BROKEN: ed0655b1bb2b [https://github.com/biocommons/hgvs/commit/ed0655b1bb2b]]

0.4.9 (2016-08-01)

Changes since 0.4.8 (2016-07-19).

Special Attention

A small number of alignments provided by NCBI do not begin at the
transcript start. These exist in UTA as-is and lead to incorrect
mapping and validation. Issue #346 [https://github.com/biocommons/hgvs/issues/346/] contains the list of 52
transcripts in 37 genes which exhibit this issue; please review prior
results. hgvs will now refuse to use such alignments.

Bug Fixes

	#346 [https://github.com/biocommons/hgvs/issues/346/] (partial fix): ensure that alignment starts at transcript position 0 [BROKEN: ab402bf020c6 [https://github.com/biocommons/hgvs/commit/ab402bf020c6]]

	fixes #338 [https://github.com/biocommons/hgvs/issues/338/]: check position range limit when normalizing [BROKEN: da5f1fbcf76d [https://github.com/biocommons/hgvs/commit/da5f1fbcf76d]]

	fixes #285 [https://github.com/biocommons/hgvs/issues/285/], #334 [https://github.com/biocommons/hgvs/issues/334/], #335 [https://github.com/biocommons/hgvs/issues/335/], #324 [https://github.com/biocommons/hgvs/issues/324/], #340 [https://github.com/biocommons/hgvs/issues/340/]: inversions parsing, formatting, and normalization [BROKEN: 29a7b8634b01 [https://github.com/biocommons/hgvs/commit/29a7b8634b01]]

	fixes #340 [https://github.com/biocommons/hgvs/issues/340/]: do not accept sequence following inv [BROKEN: f76e1cb83422 [https://github.com/biocommons/hgvs/commit/f76e1cb83422]]

0.4.8 (2016-07-19)

Changes since 0.4.7 (2016-06-27).

Bug Fixes

	fixes #337 [https://github.com/biocommons/hgvs/issues/337/]: soft-pin bioutils >=0.1.0,<0.2.0 [BROKEN: 13620e943e0c [https://github.com/biocommons/hgvs/commit/13620e943e0c]]

0.4.7 (2016-01-23)

Changes since 0.4.6 (2016-06-27).

Bug Fixes

	fixes #310 [https://github.com/biocommons/hgvs/issues/310/]: Fix wrong start position when normalizing some variants [BROKEN: 734c08f18ea1 [https://github.com/biocommons/hgvs/commit/734c08f18ea1]]. Thanks to Meng Wang.

0.4.6 (2016-06-27)

Changes since 0.4.5 (2016-04-01).

Bug Fixes

	fixes #308 [https://github.com/biocommons/hgvs/issues/308/]: fix issues with validating across CDS start and CDS end boundaries [BROKEN: ce6995941984 [https://github.com/biocommons/hgvs/commit/ce6995941984]]

Other Changes

	closes #309 [https://github.com/biocommons/hgvs/issues/309/]: make errors more informative when coordinate is outside sequence bounds [BROKEN: e6e0decdad8e [https://github.com/biocommons/hgvs/commit/e6e0decdad8e]]

	closes #295 [https://github.com/biocommons/hgvs/issues/295/]: raise error when attempting to validate del length in intronic variants [BROKEN: 13674d3c6d14 [https://github.com/biocommons/hgvs/commit/13674d3c6d14]]

Internal and Developer Changes

	fix issues with release docs for 0.4.x layout [BROKEN: 52b2358fed02 [https://github.com/biocommons/hgvs/commit/52b2358fed02]]

0.4.5 (2016-03-31)

Changes since 0.4.4 (2015-12-15).

Special Attention

	The _execute() method of the UTA data provider was removed.

As part of addressing bug #321 [https://github.com/biocommons/hgvs/issues/321/], this internal method was
removed. Deprecation notices will not be issued for internal
methods. (By Pyhon convention, tokens beginning with an underscore are
considered private to the package or module.)

Bug Fixes

	fixes #321 [https://github.com/biocommons/hgvs/issues/321/]: use context manager to obtain and release cursors [BROKEN: 70c13e5a0643 [https://github.com/biocommons/hgvs/commit/70c13e5a0643]]

New Features

	closes #319 [https://github.com/biocommons/hgvs/issues/319/]: added PosEdit.length_change() method [BROKEN: fa5bb5fb9a50 [https://github.com/biocommons/hgvs/commit/fa5bb5fb9a50]]

Other Changes

	closes #299 [https://github.com/biocommons/hgvs/issues/299/]: migrate 0.4.x branch docs to rtd theme [BROKEN: 3e016264457d [https://github.com/biocommons/hgvs/commit/3e016264457d]]

0.4.4 (2015-12-15)

Changes since 0.4.3 (2015-12-06).

Bug Fixes

	fixes #282 [https://github.com/biocommons/hgvs/issues/282/]: preserve position in “identity” variants (e.g., norm(c.123A>A) => c.123= rather than c.=) [BROKEN: 5e6fd1524204 [https://github.com/biocommons/hgvs/commit/5e6fd1524204]]. (Reported by Stephan Pabinger.)

	fixes #294 [https://github.com/biocommons/hgvs/issues/294/]: extend variant type checks in validator [BROKEN: e28b5a525f6e [https://github.com/biocommons/hgvs/commit/e28b5a525f6e]]

	fixes #292 [https://github.com/biocommons/hgvs/issues/292/]: Fix bug in validator when validating m. variants and add tests [BROKEN: 64e31808a760 [https://github.com/biocommons/hgvs/commit/64e31808a760]]

Other Changes

	stopgap for #253 [https://github.com/biocommons/hgvs/issues/253/]: issue warning that p. validation is unsupported [BROKEN: a9bd9ab405bc [https://github.com/biocommons/hgvs/commit/a9bd9ab405bc]] (Reported by Ram Srinivasan.)

0.4.3 (2015-12-04)

Changes since 0.4.2 (2015-09-30).

New Features

	closes #281 [https://github.com/biocommons/hgvs/issues/281/]: install hgvs-shell executable with package [BROKEN: bece4e961cd4 [https://github.com/biocommons/hgvs/commit/bece4e961cd4]]

Other Changes

	closes #289 [https://github.com/biocommons/hgvs/issues/289/]: work around pycharm bug PY-4213 [https://youtrack.jetbrains.com/issue/PY-4213] [BROKEN: 19c0d4fefbfd [https://github.com/biocommons/hgvs/commit/19c0d4fefbfd]]

	added 0.4.2 changelog (after the tagged commit :-() [BROKEN: 4a596322bceb [https://github.com/biocommons/hgvs/commit/4a596322bceb]]

0.4.2 (2015-09-30)

Changes since 0.4.1 (2015-09-14).

Bug Fixes

	fixes #284 [https://github.com/biocommons/hgvs/issues/284/]: validation fails for g variants [BROKEN: 9732eaf5be1c [https://github.com/biocommons/hgvs/commit/9732eaf5be1c]]

0.4.1 (2015-09-14)

Changes since 0.4.0 (2015-09-09).

Bug Fixes

	fixes #274 [https://github.com/biocommons/hgvs/issues/274/], #275 [https://github.com/biocommons/hgvs/issues/275/]: initialize normalizer with same alt_aln_method as EasyVariantMapper [BROKEN: 43e174d6f8af [https://github.com/biocommons/hgvs/commit/43e174d6f8af]]

	fixes #276 [https://github.com/biocommons/hgvs/issues/276/]: raise error when user attempts to map to/from c. with non-coding transcript [BROKEN: 3f7b659f4f02 [https://github.com/biocommons/hgvs/commit/3f7b659f4f02]]

0.4.0 (2015-09-09)

Changes since 0.3.7 (2015-06-23). See issues at milestone 0.4.0 [https://github.com/biocommons/hgvs/milestones/0.4.0].

Special Attention

	#227 [https://github.com/biocommons/hgvs/issues/227/]: x_to_r and r_to_x methods were renamed to x_to_n and n_to_x as part of support for non-coding transcripts.

	#231 [https://github.com/biocommons/hgvs/issues/231/]: The UTA data provider will use a recently updated database by default (uta_20150827). Clients with custom configurations should use postgresql://anonymous:anonymous@uta.biocommons.org/uta/uta_20150827. (Note the change of hostname, username, and password as well; see Deprecations.)

	#238 [https://github.com/biocommons/hgvs/issues/238/]: Most methods now raise HGVSDataNotAvailableError when expected data is not available. Previously, None was returned for some methods.

	#244 [https://github.com/biocommons/hgvs/issues/244/]: Removed cache_transcripts argument from VariantMapper. This argument was deprecated in 0.3.0 and is now obsolete. Dataproviders are now expected to cache data.

	#246 [https://github.com/biocommons/hgvs/issues/246/]: Remove hgvsX_to_hgvsY methods. These methods were deprecated in 0.3.0 and are now obsolete.

	#247 [https://github.com/biocommons/hgvs/issues/247/]: Dup and Repeat “seq” instance variable renamed to “ref” for consistency.

	EasyVariantMapper, Normalizer, and Validator now fetch sequence data at runtime, which may raise performance and privacy concerns. Users may wish to read Privacy Issues [http://hgvs.readthedocs.org/en/default/privacy.html] in the documentation.

Deprecations

	UTA: UTA now uses anonymous:anonymous as the username:password. uta_public:uta_public will be obsolete shortly.

Bug Fixes

	#248 [https://github.com/biocommons/hgvs/issues/248/]: Don’t raise validation exception when del sequence is empty [BROKEN: b6c07d329d36 [https://github.com/biocommons/hgvs/commit/b6c07d329d36]]

New Features

	#44 [https://github.com/biocommons/hgvs/issues/44/]: Added variant normalization and use during mapping. Thanks to Meng Wang and Kevin Jacobs for contributions. (pull request #17)

	#168 [https://github.com/biocommons/hgvs/issues/168/]: EasyVariantMapper supports replacing the reference sequence during mapping and enabled by default.

	#227 [https://github.com/biocommons/hgvs/issues/227/]: Implement initial support for non-coding transcripts.

	#230 [https://github.com/biocommons/hgvs/issues/230/]: Allow full IUPAC for NA and AA, with tests. Previously, the grammar admitted only ACGTU.

	#233 [https://github.com/biocommons/hgvs/issues/233/]: Added get_similar_transcripts() to data UTA provider to expose UTA’s tx_similarity view.

	#234 [https://github.com/biocommons/hgvs/issues/234/], #241 [https://github.com/biocommons/hgvs/issues/241/]: Preferentially use transcript-protein accession associations from RefSeq when mapping c. to p. variants. Previously, when multiple protein accessions were associated with a single distinct sequence, the p. accession was arbitrary.

	#236 [https://github.com/biocommons/hgvs/issues/236/], #240 [https://github.com/biocommons/hgvs/issues/240/]: Added seqfetcher.SeqFetcher to fetch sequences from NCBI & Ensembl

	#250 [https://github.com/biocommons/hgvs/issues/250/]: Implemented configuration module; hgvs.global_config is initialized once and available globally

	#251 [https://github.com/biocommons/hgvs/issues/251/]: Parens now optional around p. edits; default is enabled per HGVS spec (hgvs.global_config.mapping.inferred_p_is_uncertain)

	#255 [https://github.com/biocommons/hgvs/issues/255/]: variants normalized by EasyVariantMapper by default [BROKEN: 1b85d4deabc3 [https://github.com/biocommons/hgvs/commit/1b85d4deabc3]]

	#261 [https://github.com/biocommons/hgvs/issues/261/]: Replace reference default from config (hgvs.global_config.mapping.replace_reference)

	UTA is now available as a docker image for local installation. See Local Installation of UTA (optional).

Other Changes

	#213 [https://github.com/biocommons/hgvs/issues/213/]: Clarify warning message when validating intronic variants.

	#254 [https://github.com/biocommons/hgvs/issues/254/]: Support inversion, conversion, and nadupn variants

	Added misc/experimental/tx-seq-discrepancies to identify genomic locations of reference-transcript discrepancies

	Added variant context method to evm (temporary location, but useful for debugging)

	HGVSInternalError now subclasses HGVSError (not Exception) [BROKEN: ff6cd4dc51dc [https://github.com/biocommons/hgvs/commit/ff6cd4dc51dc]]

	Lots of documentation updates.

	Raise HGVSParserError (instead of ometa.runtime.ParseError) when parsing fails [BROKEN: efa93fe29d15 [https://github.com/biocommons/hgvs/commit/efa93fe29d15]]

	The UTA data provider now checks for the requested schema on connection and provides more informative errors on failure.

	hdp.data_version returns schema name for UTA since that that is the conventional use.

	Use autocommit to prevent transaction overhead and locks [BROKEN: 65d69e41716e [https://github.com/biocommons/hgvs/commit/65d69e41716e]]

Internal and Developer Changes

	#263 [https://github.com/biocommons/hgvs/issues/263/]: Trying out a new tag-based changelog mechanism for 0.4.0 and 0.4 series.

	All code will be mercilously reformmated with yapf occasionally using .style.yapf

	Build and upload wheel packages (in addition to existing eggs and tarballs)

	Docs significantly overhauled and moved to readthedocs.org with automatic webhook-based building

	Enable users to set application_name when connecting [BROKEN: 835ac7771909 [https://github.com/biocommons/hgvs/commit/835ac7771909]]

	_UTA_URL_KEY (dev use only) will switch URLs to any in hgvs/_data/defaults.ini

	on import of hgvs, emit logging info line w/version [BROKEN: aa97f2c1cdc8 [https://github.com/biocommons/hgvs/commit/aa97f2c1cdc8]]

	sped up most tests by using setUpClass() rather than setUp() [BROKEN: a6d227f6a3e0 [https://github.com/biocommons/hgvs/commit/a6d227f6a3e0]]

 This is the monolithic changelog for the 0.0, 0.1, 0.2, and 0.3 series
of hgvs releases. Beginning with 0.4, changes will be recorded in
release-specific files; see Change Log.

0.3 Series

0.3.7 (2015-06-23)

Client Changes

	#233 [https://github.com/biocommons/hgvs/issues/233/]: Expose UTA’s notions of transcript similarity via the UTA data provider. See get_similar_transcripts().

	#236 [https://github.com/biocommons/hgvs/issues/236/]: Added seqfetcher.SeqFetcher to fetch sequences from NCBI & Ensembl

	#199 [https://github.com/biocommons/hgvs/issues/199/]: Improved installation documentation re: PostgreSQL dependency

	#232 [https://github.com/biocommons/hgvs/issues/232/]: Migrated to major.minor versions for schemas and schema provider-client compatibility; “compatible” := (provided x == required x) ^ (provided y >= required y)

	misc/experimental/vcf-add-hgvs: optionally generate coding variants

	numerous doc updates

Internal and Developer Changes

	add missing requests library to setup.py (only affected developers)

	updated bioutils version in setup.py

0.3.6 (2015-06-02)

	#228 [https://github.com/biocommons/hgvs/issues/228/]: IndexError when schema name is empty

	#228 [https://github.com/biocommons/hgvs/issues/228/]: updated CHANGELOG

	hgvs/edit.py: doc string indentation fix

0.3.5 (2015-05-19)

	#219 [https://github.com/biocommons/hgvs/issues/219/]: remove validation requirement that ref != alt

	#220 [https://github.com/biocommons/hgvs/issues/220/]: Do not modify cached results when building CIGAR (pkaleta)

	#226 [https://github.com/biocommons/hgvs/issues/226/]: support schema names in db urls; standardized search_path handling; merge connection pool and single-threaded client classes

	added AUTHORS

0.3.4 (unreleased)

0.3.3 (2014-08-28)

	#194 [https://github.com/biocommons/hgvs/issues/194/]: fix bug when reverse complementing nucleotides parsed from unicode

	#197 [https://github.com/biocommons/hgvs/issues/197/]: use utf-8 coding, unicode, and all py3k __future__ features in all source

	#198 [https://github.com/biocommons/hgvs/issues/198/]: documentation improvements

	#202 [https://github.com/biocommons/hgvs/issues/202/]: implement mutalyzer comparisons

	#203 [https://github.com/biocommons/hgvs/issues/203/]: return HGVSParseError instead of ometa.runtime.ParseError for parsing errors

	#205 [https://github.com/biocommons/hgvs/issues/205/]: fix “base” bias for the exact middle of an odd-length intron

	#206 [https://github.com/biocommons/hgvs/issues/206/]: make get_tx_for_region return only transcripts with alignment data

	added flake8 configuration

	added regression test framework (tests/data/gcp/regression.tsv)

0.3.2 (2014-07-12)

	#194 [https://github.com/biocommons/hgvs/issues/194/]: fix bug when reverse complementing nucleotides parsed from unicode

0.3.1 (2014-07-12)

	#193 [https://github.com/biocommons/hgvs/issues/193/]: fix lookup table for NC_000014.8 (was .10)

	#192 [https://github.com/biocommons/hgvs/issues/192/]: deprecated VariantMapper cache_transcripts param and replaced with always-on lru cache in uta data provider

0.3.0 (2014-06-19)

	#103 [https://github.com/biocommons/hgvs/issues/103/]: significantly updated documentation

	#162 [https://github.com/biocommons/hgvs/issues/162/]: provide simplified mapping interface, EasyVariantMapper

	#171 [https://github.com/biocommons/hgvs/issues/171/]: integrate the data provider interface into hgvs, obsoleting bdi. See hgvs.dataproviders.*

	#177 [https://github.com/biocommons/hgvs/issues/177/]: rename mapping functions to x_to_y (dropping “hgvs” prefix)

	#180 [https://github.com/biocommons/hgvs/issues/180/]: made set_uncertain an internal method (_set_uncertain)

	#181 [https://github.com/biocommons/hgvs/issues/181/]: renamed hgvs.hgvsmapper.HGVSMapper to hgvs.variantmapper.VariantMapper

	#184 [https://github.com/biocommons/hgvs/issues/184/]: rename HGVSPosition.seqref to ac

	#185 [https://github.com/biocommons/hgvs/issues/185/]: enable validator to use HDPI to fetch sequence data; mfdb now required only for genomic sequences

	Makefile: print machine info during testing to calibrate/debug timing probs

	moved hgvs/data to hgvs/_data to emphasize it is internal and avoid tab completion on it

	remove unused args from VariantMapper.c_to_p()

	replace u1/uta1 references with hdp; update docs

	replaced bdi with hdp when referencing the data provider; tests pass

	setup.py: removed nose-timer (appeared to cause problems with pip install)

	standardize exception names with “HGVS” prefix

	updated examples/manuscript-example; other minor changes

0.2 Series

0.2.2 (2014-06-12)

	#103 [https://github.com/biocommons/hgvs/issues/103/]: significantly updated documentation

	#142 [https://github.com/biocommons/hgvs/issues/142/]: added BIC test cases

	#167 [https://github.com/biocommons/hgvs/issues/167/]: disable the any_variant rule because it is confusing

	#179 [https://github.com/biocommons/hgvs/issues/179/]: added quick and extra tags to tests; updated Makefile to support make test, test-quick, test-extra; removed test_hgvs_parser_real (but kept gcp version)

	added support for testing models (“models” attr and test-models)

0.2.1 (2014-06-11)

	#157 [https://github.com/biocommons/hgvs/issues/157/]: don’t reverse complement numeric “sequences” (as in del26)

	#159 [https://github.com/biocommons/hgvs/issues/159/]: Update comment in tests/data/ADRA2B-dbSNP.tsv

	#161 [https://github.com/biocommons/hgvs/issues/161/]: transform examples to sphinx doc (+upload)

	#167 [https://github.com/biocommons/hgvs/issues/167/]: disable the any_variant rule because it is confusing

	#175 [https://github.com/biocommons/hgvs/issues/175/]: added type to NADupN and Copy edit classes

	Added Important Notes section in README.rst

	Makefile: “test” target should depend on “setup” after all

	added example for stringification to README.rst

	added examples/Manuscript Example.ipynb

	added installation status (from hgvs-integration-test at travis-ci) and build status (from drone.io)

	hgvsmapper: use deepcopy when converting edits

	removed unused sphinx_pypi_upload.py

	updated examples to use uta1

0.2.0 (2014-03-09)

	updated README.rst example to use uta1; added .rst files to nosetest testing

	added ci-test-ve; switched to hgtools 5.0 use_vcs_version in setup.py

	take 1 on reconcililing test differences between internal jenkins and drone.io

	removed accidental tag (!); added sphinxcontrib-fulltoc to setup.py

0.1 Series

0.1.11 (2014-03-05)

	removed accidental tag (!); added sphinxcontrib-fulltoc to setup.py

	updated package metadata; removed requirements.txt; tests pass

0.1.9 (2014-03-05)

	#40 [https://github.com/biocommons/hgvs/issues/40/]: added additional tests

	#114 [https://github.com/biocommons/hgvs/issues/114/]: add test that checks that all rules have been tested - and add tests for rules that were missed!

	#135 [https://github.com/biocommons/hgvs/issues/135/]: add more tests; fixed and enabled tests previously commented out

	#147 [https://github.com/biocommons/hgvs/issues/147/]: update tests to use updated sqlite test DB

	Added U14680.1 (BIC tx) to grammar test

	ExtrinsicValidator should not guess about bdi and mfdb sources; instead require caller to specify

	Fixed an un-handled case for parsing AA frameshifts - short form, e.g. “Ala97fs” (no alt AA). Added tests.

	Makefile, setup,py, setup.cfg sync with sibling projects

	Merged hgvs_using_uta1 into default

	Merged in extrinsic_validation (pull request #5 [https://github.com/biocommons/hgvs/issues/5/])

	Remove redundant test

	added Validator class that wraps instrinsic and extrinsic validation

	added bdi accession testing

	added codeship status badge to README.rst, for testing

	added creating-a-variant example

	added sbin/get-dbsnp-tests-for-gene

	added tests from dbSNP for 6 new gene; fixed probs with uncertainty and Terd+ in existing tests

	bug fixes for uta1 integration; all tests pass except for sqlite db test

	checking cigar ref tgt orientation

	cigar intron count fix

	cut DNAH11 tests to representative set (apx 80% cut)

	finished integrating uta1 into hgvs and started updating tests

	fixed DNAH11-dbSNP tests

	fixed bug when falling off transcripts

	hgvsmapper is updated with uta1 requirements. testing modifications using hgvs-shell

	removed accession test from extrinsic validator (sequence lookup covers accession lookup)

	removed codeship badge

	renamed ~Validation to ~Validator to keep with class-as-actor naming scheme

	starting external validation with bdi

	testing

	trivial change to tickle codeship build

	updated edit type and tests to include identity for sub e.g., T>T

	updated external validation using bdi; added identity edit type for sub T>T; added HGVSValidationException class; added sample tests for mfdb

	updated package metadata; removed requirements.txt; tests pass

	upped bdi min version to >=0.1.0 (interface1)

	use pip installation status as build status since that’s what users will experience

	working through updating TM and IM. HM g_to_c appears to work

0.1.8 (2014-01-22)

	updated README.rst example for bdi connect()

0.1.7 (2014-01-22)

	#106 [https://github.com/biocommons/hgvs/issues/106/], #108 [https://github.com/biocommons/hgvs/issues/108/]: parse uncertain hgvsp/hgvsr; converter produces uncertain hgvsp.

	#110 [https://github.com/biocommons/hgvs/issues/110/], #111 [https://github.com/biocommons/hgvs/issues/111/]: handle cases of entire gene deletion (p.0?) and stop codon in frame (p.?). Updated tests.

	#65 [https://github.com/biocommons/hgvs/issues/65/], #89 [https://github.com/biocommons/hgvs/issues/89/]: can now parse Met1? and ext*N; removed extra fs parsing from delins.

	#65 [https://github.com/biocommons/hgvs/issues/65/]: cleanup; AASub can go back to being a subclass of AARefAlt

	#65 [https://github.com/biocommons/hgvs/issues/65/]: def_p_pos needs to accept term13 as well as aa13 for ext; tests updated.

	#65 [https://github.com/biocommons/hgvs/issues/65/]: fixed an ordering bug; added tests.

	#65 [https://github.com/biocommons/hgvs/issues/65/]: fs/ext are now their own pro_edit types; they correspond to their own class objects. 5’ extensions and 3’ extensions can be parsed. Tests updated.

	#65 [https://github.com/biocommons/hgvs/issues/65/]: should be stringifying * as Ter; fixed code in 2 lines & tests in many.

	#65 [https://github.com/biocommons/hgvs/issues/65/]: tighten ext rules; require a number for new start positions.

	#90 [https://github.com/biocommons/hgvs/issues/90/]: added dup in hgvsmapper; allowed rev complement util to handle None (was triggering exceptions); added tests for dup.

	#91 [https://github.com/biocommons/hgvs/issues/91/]: add extension support for parsing copyN and DupN

	#91 [https://github.com/biocommons/hgvs/issues/91/]: make adding default totally extendable by allowing additional imports for the base grammar (default empty list)

	#91 [https://github.com/biocommons/hgvs/issues/91/]: simplest implementation of parsing copyN, dupN - added directly to grammar (no extension)

	#99 [https://github.com/biocommons/hgvs/issues/99/]: fix aa13t parsing

	#99 [https://github.com/biocommons/hgvs/issues/99/]: fix aa13t parsing, take 2; tests pass (including G* test)

	#99 [https://github.com/biocommons/hgvs/issues/99/]: re-enable tests related to this issue.

	Fixed a bug where del5insT was getting stringified as “5>T”

	added datum to range checking

	added datum to range checking

	added edit type as a property to the edit object; updated tests; added examples to hgvs-shell

	added edit type as a property to the edit object; updated tests; added examples to hgvs-shell

	close anonymous branch

	closed experimental dev branch

	closed hgvsvalidator feature branch on wrong default branch (grafted to default)

	doc updates and Makefile fix after fouled merge

	fixed minor doc typos

	hgvsc_to_hgvsp - ac defaults to None; seems better than forcing the user to pass ‘None’ as a param if they want the protein accession looked up.

	iv grammar branch

	make doc is broken & not used; removing it from make ci-test for now.

	merged in validator (pull request #4 [https://github.com/biocommons/hgvs/issues/4/])

	minor change to rebase

	removed links section from README

	renamed hgvsvalidator to validator and corresponding test; corrected start-end check added tests

	revised intrinsic validator and tests; deleted requests from setup.py

	updated README.rst example for bdi connect()

	updated docs to point back to pythonhosted

	updated installation.rst

	updated ipython notebook examples

	updated railroad building

	updated railroad in docs

	updated the fragile railroad building again

0.1.6 (2014-01-11)

	updated docs to point back to pythonhosted

	added setuptools to requirements.txt

	updated requirements.txt

	fixed bug in setup.py re: classifiers

0.1.5 (2014-01-11)

	fixed bug in setup.py re: classifiers

0.1.4 (2014-01-11)

	#97 [https://github.com/biocommons/hgvs/issues/97/]: a bagillion doc updates; branch closed

0.1.3 (2014-01-11)

	#60 [https://github.com/biocommons/hgvs/issues/60/]: 1st stab at grammar tests from the bottom-up (through locations/definite positions). (See header in test_hgvs_grammar_full.py for details.) Also added a few error checking tests.

	#60 [https://github.com/biocommons/hgvs/issues/60/]: drop None from SequenceVariant (use case - only parsing an edit); grammar update for offset

	#60 [https://github.com/biocommons/hgvs/issues/60/]: implement cleanup; distributed remaining items to separate issues.

	#73 [https://github.com/biocommons/hgvs/issues/73/]: migrate hgvs to bdi-based protein accession lookup

	#90 [https://github.com/biocommons/hgvs/issues/90/]: fixed typo for delins and ins for parsing hgvsp

	#92 [https://github.com/biocommons/hgvs/issues/92/]: add a subclass of AARefAlt (AASub) which overrides __str__ to get the representation right; grammar update

	#92 [https://github.com/biocommons/hgvs/issues/92/]: fix error in NARefAlt

	#93 [https://github.com/biocommons/hgvs/issues/93/]: added variant liftover for HGVS projector, with tests

	#93 [https://github.com/biocommons/hgvs/issues/93/]: implemented HGVS projector for interval liftover

	#96 [https://github.com/biocommons/hgvs/issues/96/]: cleanup and test update

	#96 [https://github.com/biocommons/hgvs/issues/96/]: deleting tests/data

	#96 [https://github.com/biocommons/hgvs/issues/96/]: fix file

	#96 [https://github.com/biocommons/hgvs/issues/96/]: name cleanup

	#96 [https://github.com/biocommons/hgvs/issues/96/]: removed nightly test target

	#96 [https://github.com/biocommons/hgvs/issues/96/]: short set of real data for gcp parsing

	#97 [https://github.com/biocommons/hgvs/issues/97/]: a bagillion doc updates; branch closed

	#97 [https://github.com/biocommons/hgvs/issues/97/]: major doc restructuring, cleanup, additions

	A few more basic tests

	Add parser test which just tries to parse all the cvids (g, c and p) - currently skips unsupported forms. Also tweaked the r variants in the all cvid file (T should be U).

	Add some basic intervalmapper tests based on the coverage results

	Fill in more protein edit tests

	Fixed a bug breaking n_edit and m_edit; updated tests.

	Make documentation more Sphinx-friendly

	More grammar tests; simplified dup check for hgvsc to p conversion

	Tweak HGVSp expected so an edit creating a stop codon is represented by Ter instead of * (to match hgvs string code)

	add alternative UTA_DB_URL options to Makefile; cleanup eggs in cleanest (not cleaner) and bdist et al. in cleaner (not cleanest)

	added .travis.yml

	added a projector example

	added classifiers and keywords to setup.py

	added license to docs

	added railroad diagram to docs

	additional grammar tests - HGVS edits are failing commented out for now

	bug fix: make test was running nightly tests

	build reST doc for railroad grammar

	code cleanup

	commenting out test until I am in a place where I can run it

	doc updates

	eliminated most sphinx warnings

	lots of doc restructuring and consolidation

	minor cleanup

	more grammar tests

	removed reST examples

	sync default into branch

	sync default into dev

	updated README with pypi info

	updated installation

	updated misc/hgvs-shell for new bdi.uta0.connect()

	updated railroad diagram to include version number

	updated sphinx doc/source/conf.py

	yet more doc changes

0.1.2 (2014-01-05)

	#85 [https://github.com/biocommons/hgvs/issues/85/]: adapted hgvs to bdi with runtime-selectable UTA connections

	updated README with pypi info

	doc updates

	now depend on uta and bdi from PyPI (not dependency_links); sync’d Makefile and setup.py with uta; updated test and docs targets

0.1.1 (2014-01-03)

	#64 [https://github.com/biocommons/hgvs/issues/64/]: handle the following: (1) indel crosses stop codon; (2) indel crosses start codon; need to retest on full suite

	#64 [https://github.com/biocommons/hgvs/issues/64/]: update 4 tests to reflect p.Met1? behavior for deletions crossing from 5’utr to cds:

	#83 [https://github.com/biocommons/hgvs/issues/83/]: cleanup fs* cases where mutalyzer assigns fs*N where N = end of transcript instead of an actual stop codon (expected result is now fs*?)

	#83 [https://github.com/biocommons/hgvs/issues/83/]: comment out tests that need review/cleanup (and added comment); fixed tests where expected result was incorrect (still need to check tests w/ no expected result)

	#83 [https://github.com/biocommons/hgvs/issues/83/]: fill in intronic variants with expected hgvsp results (p.?) per curators

	#84 [https://github.com/biocommons/hgvs/issues/84/]: ext with no stop codons are represented as ext*? - updated tests accordingly

	#84 [https://github.com/biocommons/hgvs/issues/84/]: fix expected result

	Turn off dbg

	Turn off more dbg

	added lots of documentation

	added Apache license and code boilerplate to all source files and scripts

	doc updates

	fix coverage by calling tests via python setup.py nosetest; fix test name

	logo: rotated, moved to subdir, created favicon

	made png and ico logos transparent

	moved sphinx sources to doc/source and updated configs

	now depend on uta and bdi from PyPI (not dependency_links); sync’d Makefile and setup.py with uta; updated test and docs targets

	removed test-setup-coverage from Makefile dependencies (put in setup.py instead)

	s/locusdevelopment/invitae/

	updated doc static images

	updated hgvs-logo.png per Makefile

	updated setup.py “license” attribute

	vastly improved sphinx documentation. More to do

0.1.0 (2013-12-30)

	#52 [https://github.com/biocommons/hgvs/issues/52/]: generate syntax/railroad diagrams (in misc/railroad/)

	#56 [https://github.com/biocommons/hgvs/issues/56/]: updated tests; fixed fs*N (only one still broken)

	#62 [https://github.com/biocommons/hgvs/issues/62/]: synchronized setup files among UTA program components

	#66 [https://github.com/biocommons/hgvs/issues/66/]: added support for p.0, p.=, p.?, p.(=), p.(?), with tests

	#66 [https://github.com/biocommons/hgvs/issues/66/]: updated grammar for p.0, p.=, p.?, p.(=), p.(?) to reject invalid p.(0), etc.

	#72 [https://github.com/biocommons/hgvs/issues/72/]: update hgvs to use bdi (no direct connections to uta anymore)

	Close branch jenkins.

	Convert test input and consumer to use 4-column format

	Fix extension for frameshift case; update test to get around dupN (trim the N)

	Fix tag

	Last cleanup before merge

	README.rst: fixed preformatted text (that wasn’t)

	Refactored cp tests to work from a common base which more closely resembles the gcp test. All-CVID test input file is in 4-column format (lots of missing data, though)

	Revamp of c to p based on tests results; checkpoint. Sanity & EH tests all run.

	Update makefile to include a mechanism for generating code coverage during tests

	Updated Makefile test task to skip tests prefixed with test_nightly; added task to run all; enabled all cvid test to check this

	add missing files to package_data

	added Apache license and code boilerplate to all source files and scripts

	added architecture & dependency info to README.rst

	added comments to failed and broken tests

	added examples directory

	added sbin/test-runner (see script header for example)

	added setuptools>2.0 to setup.py (testing); updated README.rst

	close branch

	corrected minor README typo

	fix test

	fixed bug in reported AA edit for extensions

	fixed bug introduced in 63e0baf7c986; removed unnecessary and obsolete edti.interface import in tests/framework/mock_input_source.py

	fixed bug that caused protein accession to be not looked up when not specified

	fixed bug with unqualified class names in hgvs.pymeta

	hgvsc to hgvsp bug fixes/updates: changed del/dups to represent the c-terminal end; variants in utr, intron & 1st AA are treated as p.? (subject to review). Cleaned up test data. Tweaked seguid data so the tests pick up the correct NP in a case where there’s more than one match - mainly just to get the tests to pass.

	hgvsc to p takes an accession

	make the nightly start from make cleanest (tougher)

	merge into default

	more README and setup.py updates

	move edti bits to bdi

	moved misc/hgvs-shell to sbin

	setup.py: testing yet another dependency_links format

	updated README.rst

	updated bdi and tests to use external UTA instance

	updated examples dir

	updated logo and README

0.0 Series

0.0.9 (2013-12-16)

	added comments to failed and broken tests

	renamed grammars to .pymeta

	consolidated g-c-p testing into a single test file; commented out putatively broken tests; DNAH11 works!

	add forgotten sbin/fasta-seguid for commit -2 (0d29d0ea2d42)

	fixed minor grammar bugs re: AA term and frameshift

	added accession lookup for all of RefSeq protein

	got ‘make jenkins’ target working

	harmonized with UTA Makefile and setup.py to try to get tests working

	added biopython to setup.py

	fixed pro_eq grammar bug mentioned in #42 [https://github.com/biocommons/hgvs/issues/42/]

	Updated DNAH11 and NEFL tests. They run, so I’ll mark as complete, but there are errors associated with the proteins

	hgvsc_to_hgvsp: Fixed a delins bug

	hgvsc_to_hgvsp: Fixed bug in insertion indexing; improved exception handing

	added misc/hgvs-shell to simplify manual testing

	hgvs tests for DNAH11 and NEFL -> note protein not currently working just change if statement

	initial checkin for jenkins branch; want to test this in the build context

	Close branch c_to_p

	Merged in c_to_p (pull request #3 [https://github.com/biocommons/hgvs/issues/3/])

	Incorporate AASpecial; tests pass.

	merge from default

	merged default into c_to_p

	added AASpecial to handle p.=, p.?, p.0 (and parenthesized versions)

	fixed setup.py issue that caused omission of hgvs.utils on install

	Forgot to add a test file to mercurial

	Merged from default; fixed a test.

	Make test file name more consistent

	SImplified comparison in the event of a simple substitution; updated tests so the failed tests are commented out.

	Reformatted Emily’s test data to make it more consumer-friendly; continuous test tweaking - latest checkpoint.

	Another couple of fixes based on EH tests; checking in working version of the tests.

	updated hgvsmapper with all g<->r<->c transformations

	remove explicit class references from makeGrammar invocation, require fully-qualified class name in hgvs.ometa

	close uncertainty branch

	added chr_to_NC in utils, added c_to_g in hgvsmapper

	Name cleanup for tests

	Tests now play nicely with both real data and the mock data.

	Add call to get_tx_seq()

	Missed a rename in the tests.

	Rename test classes to be a bit more consistent with their use.

	Inserted hgvsc_to_hgvsp into hgvsmapper.

	merge from default

	align with developer.rst conventions on naming hgvs variants vs. strings

	Fix tests to run in makefile context; some more documentation

	revamped hgvs_c_to_p so its interface matches hgvsmapper; should make incorporation a simple matter of copying the hgvsc_to_hgvsp method in. Updated tests accordingly. Moved tests to top-level.

	Merge from default

	Re-arranging code for utils/staging for hgvs mapper.

	Purged debug code

	Ack - last checkin broke the tests; fixed accession setup

	format cleanup

	Incorporate stopgap for protein accession; refactor so interface consumes data in the current UTA format; refactor tests to mimic UTA input; getting actual seq is still a placeholder.

	merging default into c_to_p

	added location uncertainty (parsing, representation, formatting, testing)

	added multifastadb code and tests

	[mq]: hgvsmapper-work

	imported patch hgvs-utils-dir

	added multifastadb tool and tests

	added Rudy’s AA p.= rule

	[mq]: grammar-relo

	added hgvs.stopgap

	Close branch transcriptmapper

	Merged in transcriptmapper (pull request #2 [https://github.com/biocommons/hgvs/issues/2/])

	added TODO for tracking, prior to merging pull request

	Basic handling of variants in non-coding regions; will return p.= in all cases; this does not handle the case where a 5’utr variant results in the creation of an upstream Met.

	merged with default, TM bug fixes and more tests

	cleanup names (or at least make them a little more descriptive)

	added tm.cds_start_i in place of hard coding cds

	refactoring

	Roll back exon-specific changes and assume input is entire transcript concatenated together; retain the transcript data as recordtype

	fix test for AA in 2nd exon

	Convert transcript data object to recordtype; add tests for multi-exon (in progress)

	more tests

	additional TM fixes and more tests with multiple exons and strands

	Account for transcripts w/ more than 1 exon (test input assumed one)

	added some 1-exon tests

	Incorporate aa util and extend interval class (for test data); convert code to produce SequenceVariant objects for hgvs c to p. Also hacked in a way to handle p.= into the grammar (should be reviewed before merge).

	bug fixes

	Merged default into c_to_p

	added enum to transcriptmapper tests

	Last cleanup before merging default into here

	all input/output is hgvs-based. updated tests accordingly

	Close branch protein-variants

	Merged in protein-variants (pull request #1 [https://github.com/biocommons/hgvs/issues/1/])

	hgvs.edit: fixed and improved fs handling, and added mediocre tests

	hgvs.utils: added Xaa=X, Ter=*, Sec=U for aa1-to-aa3 & aa3-to-aa1 translation

	code cleaning

	finished tests for transcriptmapper

	finished all the g,r,c conversions adding more tests

	More cleanup; simplify variant inserter code

	updated transcriptmapper to support g->r, r->g, r->c and appropriate tests

	minor cleanup

	variant insert tests

	merged edti-uta0 branch

	closing branch prior to merge

	edti: added __metaclass__ to edti.interface; added fetch_gene_info to uta0

	hgvs.edti: EDTI base interface and UTA0 implementation milestone

	hgvs.parser: add function attributes for every rule to enable, e.g., Parser.parse_c_interval(…)

	implemented p. parsing and formatting, with tests

	hgvs.utils: handle case when aa string is None

	hgvs.utils: added aa_to_aa{1,3} functions to coerce to 1- or 3-letter amino acids

	hgvs.utils: added protein 1-letter and 3-letter conversion

	Checkpoint for new branch (hgvs c to p)

	branched transcriptmapper

	improved parsing of hgvs_position rules (i.e., without edits) to handle g,m,n,r,c,p types distinctly

	added {gmn,c,r,p}_edit rule to parse variants without accesssions (e.g., c.76A>T)

	renamed DelIns class to RefAlt

	renamed Variant to SequenceVariant, and instance variant seqref to ac

	closed abandoned protein-support branch

	updated parser tests to include aspirational and “reject” tests

	[mq]: import-location-changes

	[mq]: import

	hgvs.location: renamed location classes; added BaseOffset position for r. and c.; removed predicate methods (is_exonic, etc);

	incomplete, buggy milestone

	setup.py: use full path for doc/description.rst

	updated CDSPosition to include datum and added tests

	use get_distribution() rather than require() to fetch version

	Fix for pathing to grammar.txt from within hgvs.parser.Parser

	modified setup.py to zipsafe false

	TODO edited online with Bitbucket

	Making setup.py file pathing absolute

	Fix for setup.py

	updated Makefile and setup.py

	revert directory to current after upload

	fixed bug in HGVSPosition.__str__ and added HGVSPosition test

0.0.7 (2013-10-11)

	fixed bug in HGVSPosition.__str__ and added HGVSPosition test

	collapsed grammar cases for c_pos; fixed variant test case typo

0.0.6 (2013-10-11)

	collapsed grammar cases for c_pos; fixed variant test case typo

	updated docs; fixed typo in variant

0.0.5 (2013-10-11)

	updated docs; fixed typo in variant

	added HGVSPosition (aka HGVS Lite)

0.0.4 (2013-10-11)

	added HGVSPosition (aka HGVS Lite)

	“simple” (single site) variants now pass tests

	update hgvs.__init__ and sphinx to use version from hgtools

0.0.3 (2013-10-10)

	update hgvs.__init__ and sphinx to use version from hgtools

	removed home-grown hg versioning in favor of hgtools

	removed virtualenv support and cleaned up Makefile

	milestone sync; c, gmn, and r types mostly work; some tests broken

	updated variant and added test

	updated grammar (more to do) and tests

	added hgvs.posedit and tests

	updated hgvs.edit

	removed CDSInterval (will use Interval for all intervals)

	fixed typo

	update hgvs.location and tests

	minor setup.py changes

0.0.2 (2013-09-20)

	minor setup.py changes

	grammar simplification; added Laros grammar, examples, comments

	Reverted Lawrence’s changes to edit.py (after discussing with him).

	Adding some convenience properties to be used in Geneticus.

	updated grammar; added README.rst

	added missing deps to setup.py; switched to plain ole distutils

	added developer notes, logo, sphinx config

0.0.1 (2014-08-01)

	initial commit

License

The hgvs package [https://github.com/biocommons/hgvs] is released under the Apache License 2.0 [http://www.apache.org/licenses/LICENSE-2.0], the text of which
appears below:

 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work.

 To apply the Apache License to your work, attach the following
 boilerplate notice, with the fields enclosed by brackets "[]"
 replaced with your own identifying information. (Don't include
 the brackets!) The text should be enclosed in the appropriate
 comment syntax for the file format. We also recommend that a
 file or class name and description of purpose be included on the
 same "printed page" as the copyright notice for easier
 identification within third-party archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

 Python Module Index

 h

 		 	

 		
 h	

 	[image: -]
 	
 hgvs	

 	
 	
 hgvs.alignmentmapper	

 	
 	
 hgvs.assemblymapper	

 	
 	
 hgvs.config	

 	
 	
 hgvs.dataproviders.interface	

 	
 	
 hgvs.dataproviders.uta	

 	
 	
 hgvs.easy	

 	
 	
 hgvs.edit	

 	
 	
 hgvs.hgvsposition	

 	
 	
 hgvs.location	

 	
 	
 hgvs.normalizer	

 	
 	
 hgvs.parser	

 	
 	
 hgvs.posedit	

 	
 	
 hgvs.projector	

 	
 	
 hgvs.sequencevariant	

 	
 	
 hgvs.validator	

 	
 	
 hgvs.variantmapper	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V

A

 	
 	aa (hgvs.location.AAPosition attribute)

 	AAExt (class in hgvs.edit)

 	AAFs (class in hgvs.edit)

 	AAPosition (class in hgvs.location)

 	AARefAlt (class in hgvs.edit)

 	AASub (class in hgvs.edit)

 	aaterm (hgvs.edit.AAExt attribute)

 	ac (hgvs.hgvsposition.HGVSPosition attribute)

 	(hgvs.sequencevariant.SequenceVariant attribute)

 	
 	AlignmentMapper (class in hgvs.alignmentmapper)

 	alt (hgvs.edit.AAExt attribute)

 	(hgvs.edit.AAFs attribute)

 	(hgvs.edit.AARefAlt attribute)

 	(hgvs.edit.NARefAlt attribute)

 	alt_ac (hgvs.alignmentmapper.AlignmentMapper attribute)

 	alt_aln_method (hgvs.alignmentmapper.AlignmentMapper attribute)

 	AssemblyMapper (class in hgvs.assemblymapper)

B

 	
 	base (hgvs.location.AAPosition attribute)

 	(hgvs.location.BaseOffsetPosition attribute)

 	(hgvs.location.SimplePosition attribute)

 	
 	BaseOffsetInterval (class in hgvs.location)

 	BaseOffsetPosition (class in hgvs.location)

C

 	
 	c_to_g() (hgvs.alignmentmapper.AlignmentMapper method)

 	(hgvs.assemblymapper.AssemblyMapper method)

 	(hgvs.variantmapper.VariantMapper method)

 	c_to_n() (hgvs.alignmentmapper.AlignmentMapper method)

 	(hgvs.assemblymapper.AssemblyMapper method)

 	(hgvs.variantmapper.VariantMapper method)

 	c_to_p() (hgvs.assemblymapper.AssemblyMapper method)

 	(hgvs.variantmapper.VariantMapper method)

 	cds_end_i (hgvs.alignmentmapper.AlignmentMapper attribute)

 	
 	cds_start_i (hgvs.alignmentmapper.AlignmentMapper attribute)

 	check_datum() (hgvs.location.BaseOffsetInterval method)

 	cigar (hgvs.alignmentmapper.AlignmentMapper attribute)

 	cigar_op (hgvs.alignmentmapper.AlignmentMapper attribute)

 	close() (hgvs.dataproviders.uta.UTA_postgresql method)

 	Config (class in hgvs.config)

 	ConfigGroup (class in hgvs.config)

 	connect() (in module hgvs.dataproviders.uta)

 	Conv (class in hgvs.edit)

 	copy (hgvs.edit.NACopy attribute)

D

 	
 	data_version() (hgvs.dataproviders.interface.Interface method)

 	(hgvs.dataproviders.uta.UTABase method)

 	
 	database (hgvs.dataproviders.uta.ParseResult attribute)

 	datum (hgvs.location.BaseOffsetPosition attribute)

 	Dup (class in hgvs.edit)

E

 	
 	Edit (class in hgvs.edit)

 	edit (hgvs.posedit.PosEdit attribute)

 	
 	end (hgvs.location.Interval attribute)

 	ExtrinsicValidator (class in hgvs.validator)

F

 	
 	fill_ref() (hgvs.sequencevariant.SequenceVariant method)

 	format() (hgvs.edit.AAExt method)

 	(hgvs.edit.AAFs method)

 	(hgvs.edit.AARefAlt method)

 	(hgvs.edit.AASub method)

 	(hgvs.edit.Dup method)

 	(hgvs.edit.Edit method)

 	(hgvs.edit.NARefAlt method)

 	(hgvs.edit.Repeat method)

 	(hgvs.location.AAPosition method)

 	(hgvs.location.BaseOffsetPosition method)

 	(hgvs.location.Interval method)

 	(hgvs.location.SimplePosition method)

 	(hgvs.posedit.PosEdit method)

 	(hgvs.sequencevariant.SequenceVariant method)

 	
 	from_ac (hgvs.edit.Conv attribute)

 	from_pos (hgvs.edit.Conv attribute)

 	from_type (hgvs.edit.Conv attribute)

G

 	
 	g_to_c() (hgvs.alignmentmapper.AlignmentMapper method)

 	(hgvs.assemblymapper.AssemblyMapper method)

 	(hgvs.variantmapper.VariantMapper method)

 	g_to_n() (hgvs.alignmentmapper.AlignmentMapper method)

 	(hgvs.assemblymapper.AssemblyMapper method)

 	(hgvs.variantmapper.VariantMapper method)

 	g_to_t() (hgvs.assemblymapper.AssemblyMapper method)

 	(hgvs.variantmapper.VariantMapper method)

 	gc_offset (hgvs.alignmentmapper.AlignmentMapper attribute)

 	gene (hgvs.hgvsposition.HGVSPosition attribute)

 	(hgvs.sequencevariant.SequenceVariant attribute)

 	get_acs_for_protein_seq() (hgvs.dataproviders.interface.Interface method)

 	(hgvs.dataproviders.uta.UTABase method)

 	get_assembly_map() (hgvs.dataproviders.interface.Interface method)

 	(hgvs.dataproviders.uta.UTABase method)

 	get_gene_info() (hgvs.dataproviders.interface.Interface method)

 	(hgvs.dataproviders.uta.UTABase method)

 	
 	get_pro_ac_for_tx_ac() (hgvs.dataproviders.interface.Interface method)

 	(hgvs.dataproviders.uta.UTABase method)

 	get_seq() (hgvs.dataproviders.interface.Interface method)

 	(hgvs.dataproviders.uta.UTABase method)

 	get_similar_transcripts() (hgvs.dataproviders.interface.Interface method)

 	(hgvs.dataproviders.uta.UTABase method)

 	get_tx_exons() (hgvs.dataproviders.interface.Interface method)

 	(hgvs.dataproviders.uta.UTABase method)

 	get_tx_for_gene() (hgvs.dataproviders.interface.Interface method)

 	(hgvs.dataproviders.uta.UTABase method)

 	get_tx_for_region() (hgvs.dataproviders.interface.Interface method)

 	(hgvs.dataproviders.uta.UTABase method)

 	get_tx_identity_info() (hgvs.dataproviders.interface.Interface method)

 	(hgvs.dataproviders.uta.UTABase method)

 	get_tx_info() (hgvs.dataproviders.interface.Interface method)

 	(hgvs.dataproviders.uta.UTABase method)

 	get_tx_mapping_options() (hgvs.dataproviders.interface.Interface method)

 	(hgvs.dataproviders.uta.UTABase method)

H

 	
 	hgvs (module)

 	hgvs.alignmentmapper (module)

 	hgvs.assemblymapper (module)

 	hgvs.config (module)

 	hgvs.config.global_config (in module hgvs.config)

 	hgvs.dataproviders.interface (module)

 	hgvs.dataproviders.uta (module)

 	hgvs.easy (module)

 	hgvs.edit (module)

 	
 	hgvs.hgvsposition (module)

 	hgvs.location (module)

 	hgvs.normalizer (module)

 	hgvs.parser (module)

 	hgvs.posedit (module)

 	hgvs.projector (module)

 	hgvs.sequencevariant (module)

 	hgvs.validator (module)

 	hgvs.variantmapper (module)

 	HGVSPosition (class in hgvs.hgvsposition)

I

 	
 	init_met (hgvs.edit.AARefAlt attribute)

 	Interface (class in hgvs.dataproviders.interface)

 	interface_version() (hgvs.dataproviders.interface.Interface method)

 	Interval (class in hgvs.location)

 	IntrinsicValidator (class in hgvs.validator)

 	Inv (class in hgvs.edit)

 	
 	is_coding_transcript (hgvs.alignmentmapper.AlignmentMapper attribute)

 	is_intronic (hgvs.location.BaseOffsetPosition attribute)

 	is_uncertain (hgvs.location.AAPosition attribute)

 	(hgvs.location.BaseOffsetPosition attribute)

 	(hgvs.location.Interval attribute)

 	(hgvs.location.SimplePosition attribute)

L

 	
 	length (hgvs.edit.AAExt attribute)

 	(hgvs.edit.AAFs attribute)

 	
 	length_change() (hgvs.posedit.PosEdit method)

M

 	
 	max (hgvs.edit.Repeat attribute)

 	
 	min (hgvs.edit.Repeat attribute)

N

 	
 	n_to_c() (hgvs.alignmentmapper.AlignmentMapper method)

 	(hgvs.assemblymapper.AssemblyMapper method)

 	(hgvs.variantmapper.VariantMapper method)

 	n_to_g() (hgvs.alignmentmapper.AlignmentMapper method)

 	(hgvs.assemblymapper.AssemblyMapper method)

 	(hgvs.variantmapper.VariantMapper method)

 	
 	NACopy (class in hgvs.edit)

 	NARefAlt (class in hgvs.edit)

 	normalize() (hgvs.normalizer.Normalizer method)

 	Normalizer (class in hgvs.normalizer)

O

 	
 	offset (hgvs.location.BaseOffsetPosition attribute)

P

 	
 	parse() (hgvs.parser.Parser method)

 	Parser (class in hgvs.parser)

 	ParseResult (class in hgvs.dataproviders.uta)

 	pos (hgvs.hgvsposition.HGVSPosition attribute)

 	(hgvs.location.AAPosition attribute)

 	(hgvs.posedit.PosEdit attribute)

 	
 	PosEdit (class in hgvs.posedit)

 	posedit (hgvs.sequencevariant.SequenceVariant attribute)

 	project_interval_backward() (hgvs.projector.Projector method)

 	project_interval_forward() (hgvs.projector.Projector method)

 	project_variant_backward() (hgvs.projector.Projector method)

 	project_variant_forward() (hgvs.projector.Projector method)

 	Projector (class in hgvs.projector)

R

 	
 	read_stream() (hgvs.config.Config method)

 	ref (hgvs.edit.AAExt attribute)

 	(hgvs.edit.AAFs attribute)

 	(hgvs.edit.AARefAlt attribute)

 	(hgvs.edit.Dup attribute)

 	(hgvs.edit.Inv attribute)

 	(hgvs.edit.NARefAlt attribute)

 	(hgvs.edit.Repeat attribute)

 	ref_n (hgvs.edit.Inv attribute)

 	(hgvs.edit.NARefAlt attribute)

 	
 	ref_pos (hgvs.alignmentmapper.AlignmentMapper attribute)

 	ref_s (hgvs.edit.Dup attribute)

 	(hgvs.edit.Inv attribute)

 	(hgvs.edit.NARefAlt attribute)

 	relevant_transcripts() (hgvs.assemblymapper.AssemblyMapper method)

 	Repeat (class in hgvs.edit)

 	required_version (hgvs.dataproviders.interface.Interface attribute)

 	(hgvs.dataproviders.uta.UTABase attribute)

S

 	
 	schema (hgvs.dataproviders.uta.ParseResult attribute)

 	schema_version() (hgvs.dataproviders.interface.Interface method)

 	(hgvs.dataproviders.uta.UTABase method)

 	
 	SequenceVariant (class in hgvs.sequencevariant)

 	SimplePosition (class in hgvs.location)

 	start (hgvs.location.Interval attribute)

 	strand (hgvs.alignmentmapper.AlignmentMapper attribute)

T

 	
 	t_to_g() (hgvs.assemblymapper.AssemblyMapper method)

 	(hgvs.variantmapper.VariantMapper method)

 	t_to_p() (hgvs.assemblymapper.AssemblyMapper method)

 	tgt_len (hgvs.alignmentmapper.AlignmentMapper attribute)

 	tgt_pos (hgvs.alignmentmapper.AlignmentMapper attribute)

 	tx_ac (hgvs.alignmentmapper.AlignmentMapper attribute)

 	type (hgvs.edit.AAExt attribute)

 	(hgvs.edit.AAFs attribute)

 	(hgvs.edit.AARefAlt attribute)

 	(hgvs.edit.AASub attribute)

 	(hgvs.edit.Conv attribute)

 	(hgvs.edit.Dup attribute)

 	(hgvs.edit.Inv attribute)

 	(hgvs.edit.NACopy attribute)

 	(hgvs.edit.NARefAlt attribute)

 	(hgvs.edit.Repeat attribute)

 	(hgvs.hgvsposition.HGVSPosition attribute)

 	(hgvs.sequencevariant.SequenceVariant attribute)

U

 	
 	uncertain (hgvs.edit.AAExt attribute)

 	(hgvs.edit.AAFs attribute)

 	(hgvs.edit.AARefAlt attribute)

 	(hgvs.edit.Conv attribute)

 	(hgvs.edit.Dup attribute)

 	(hgvs.edit.Inv attribute)

 	(hgvs.edit.NACopy attribute)

 	(hgvs.edit.NARefAlt attribute)

 	(hgvs.edit.Repeat attribute)

 	(hgvs.location.AAPosition attribute)

 	(hgvs.location.BaseOffsetPosition attribute)

 	(hgvs.location.Interval attribute)

 	(hgvs.location.SimplePosition attribute)

 	(hgvs.posedit.PosEdit attribute)

 	
 	UTA_postgresql (class in hgvs.dataproviders.uta)

 	UTABase (class in hgvs.dataproviders.uta)

V

 	
 	validate() (hgvs.location.AAPosition method)

 	(hgvs.location.BaseOffsetPosition method)

 	(hgvs.location.Interval method)

 	(hgvs.location.SimplePosition method)

 	(hgvs.posedit.PosEdit method)

 	(hgvs.sequencevariant.SequenceVariant method)

 	(hgvs.validator.ExtrinsicValidator method)

 	(hgvs.validator.IntrinsicValidator method)

 	(hgvs.validator.Validator method)

 	
 	Validator (class in hgvs.validator)

 	VariantMapper (class in hgvs.variantmapper)

hgvs.easy

simplified imports for the hgvs package

hgvs.easy simplifies using the hgvs package by providing a single
import path and objects that are instantiated with common defaults.

With default logging levels, using hgvs.easy is straightforward and
requires no code changes:

>> from hgvs.easy import parser, projector
>> var_g = parser.parse("NC_000017.11:g.43091687delC")
>> projector.relevant_transcripts(var_g)
['NM_007294.3', 'NM_007297.3', 'NR_027676.1', 'NM_007298.3', 'NM_007299.3', 'NM_007300.3']
>> projector.g_to_t(var_g, "NM_007294.3")
SequenceVariant(ac=NM_007294.3, type=c, posedit=3844del)

hgvs.easy also introduces new functional forms for common methods.
For example:

>> from hgvs.easy import parse, get_relevant_transcripts, g_to_t
>> var_g = parse("NC_000017.11:g.43091687delC")
>> get_relevant_transcripts(var_g)
['NM_007294.3', 'NM_007297.3', 'NR_027676.1', 'NM_007298.3', 'NM_007299.3', 'NM_007300.3']
>> g_to_t(var_g, "NM_007294.3")
SequenceVariant(ac=NM_007294.3, type=c, posedit=3844del)

NOTE: A consequence of making imports easy is a loss of
configurability by the caller. The database connection is made with
no arguments (i.e., connect()), so it honors the UTA_DB_URL and
HGVS_SEQREPO_DIR environment variables but is otherwise not
configurable by the caller.

 _static/up.png

_static/down.png

_static/hgvs-logo.png
)

_static/file.png

_static/plus.png

_static/minus.png

_static/up-pressed.png

_static/comment.png

_static/comment-close.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

nav.xhtml

 Table of Contents

 		
 hgvs

 		
 Introduction

 		
 Features of the hgvs Package

 		
 Related tools

 		
 Support

 		
 Links

 		
 References

 		
 Quick Start

 		
 Install hgvs

 		
 Start hgvs-shell

 		
 Parse the genomic variant

 		
 Validating and Normalizing Variants

 		
 Projecting variants between sequences

 		
 Installing hgvs

 		
 Supported Platforms

 		
 Install Prerequisites

 		
 Use a virtual environment

 		
 Installing hgvs from PyPI (preferred)

 		
 Installing hgvs from source (for developers)

 		
 Installing SeqRepo (optional)

 		
 Local Installation of UTA (optional)

 		
 Test your installation

 		
 Package Versioning

 		
 Key Concepts

 		
 Reference Sequence Types

 		
 Variant Object Representation

 		
 Variant Mapping Tools

 		
 External Data Sources

 		
 Examples

 		
 Creating a SequenceVariant from scratch

 		
 0. Overview

 		
 1. Make an Interval to define a position of the edit

 		
 2. Make an edit object

 		
 3. Make the variant

 		
 4. Update your variant

 		
 Manuscript Example

 		
 Parse an HGVS string into a Python structure

 		
 Open the UTA public data source for mapping and validation

 		
 Project transcript variant NM_182763.2:c.688+403C>T to GRCh37 primary assembly using splign alignments

 		
 Project genomic variant to a new transcript

 		
 Infer protein changes for these transcript variants

 		
 Format the results by “stringification”

 		
 Validate a variant

 		
 Automated liftover of NM_001261456.1:c.1762A>G (rs509749) to NM_001261457.1 via GRCh37

 		
 Manual liftover of NM_001261456.1:c.1762A>G (rs509749) to NM_001261457.1 via GRCh37

 		
 Using hgvs

 		
 Variant I/O

 		
 Projecting variants between sequences

 		
 Normalizing variants

 		
 A more complex normalization example

 		
 Validating variants

 		
 Reference Manual

 		
 Grammar

 		
 Grammar Overview

 		
 Modules

 		
 Module Overview

 		
 Top-level module

 		
 Configuration

 		
 Variant Object Representation

 		
 Parsing and Formatting

 		
 Mapping

 		
 Validation and Normalization

 		
 External Data Providers

 		
 Privacy Issues

 		
 What’s not done

 		
 Data Provider Queries

 		
 Information about current connections

 		
 Historical connection information

 		
 Contributing

 		
 Highlights

 		
 A Quick Contribution Example

 		
 Using a local/alternative UTA instance

 		
 Get Cozy with make

 		
 Code Style

 		
 Variables

 		
 Release Process

 		
 Specific Example – 0.4.3 release

 		
 Getting Help

 		
 hgvs-discuss Mailing List/Group

 		
 Gitter Channel

 		
 Bug Reports

 		
 Frequently Asked Questions

 		
 Alignments for my transcript are not available. What can I do?

 		
 Why do I get different results on the UCSC browser?

 		
 Why do I get different results with Mutalyzer?

 		
 Change Log

 		
 1.4 Series

 		
 1.4.0 (2020-01-26)

 		
 1.3 Series

 		
 1.3.0 (2019-05-12)

 		
 1.2 Series

 		
 1.2.5 (2019-02-01)

 		
 1.2.4 (2018-09-28)

 		
 1.2.3 (2018-09-05)

 		
 1.2.2 (2018-07-23)

 		
 1.2.1 (2018-07-21)

 		
 1.2.0 (2018-07-14)

 		
 1.1 Series

 		
 1.1.3 (2018-07-01)

 		
 1.1.2 (2018-03-31)

 		
 1.1.1 (2017-11-24)

 		
 1.1.0 (2017-07-11)

 		
 1.0 Series

 		
 1.0.0 (2017-04-08)

 		
 0.4 Series

 		
 0.4.14 (2017-05-19)

 		
 0.4.13 (2016-12-12)

 		
 0.4.12 (2016-12-06)

 		
 0.4.11 (2016-09-15)

 		
 0.4.10 (2016-08-16)

 		
 0.4.9 (2016-08-01)

 		
 0.4.8 (2016-07-19)

 		
 0.4.7 (2016-01-23)

 		
 0.4.6 (2016-06-27)

 		
 0.4.5 (2016-03-31)

 		
 0.4.4 (2015-12-15)

 		
 0.4.3 (2015-12-04)

 		
 0.4.2 (2015-09-30)

 		
 0.4.1 (2015-09-14)

 		
 0.4.0 (2015-09-09)

 		
 0.3 Series

 		
 0.3.7 (2015-06-23)

 		
 0.3.6 (2015-06-02)

 		
 0.3.5 (2015-05-19)

 		
 0.3.4 (unreleased)

 		
 0.3.3 (2014-08-28)

 		
 0.3.2 (2014-07-12)

 		
 0.3.1 (2014-07-12)

 		
 0.3.0 (2014-06-19)

 		
 0.2 Series

 		
 0.2.2 (2014-06-12)

 		
 0.2.1 (2014-06-11)

 		
 0.2.0 (2014-03-09)

 		
 0.1 Series

 		
 0.1.11 (2014-03-05)

 		
 0.1.9 (2014-03-05)

 		
 0.1.8 (2014-01-22)

 		
 0.1.7 (2014-01-22)

 		
 0.1.6 (2014-01-11)

 		
 0.1.5 (2014-01-11)

 		
 0.1.4 (2014-01-11)

 		
 0.1.3 (2014-01-11)

 		
 0.1.2 (2014-01-05)

 		
 0.1.1 (2014-01-03)

 		
 0.1.0 (2013-12-30)

 		
 0.0 Series

 		
 0.0.9 (2013-12-16)

 		
 0.0.7 (2013-10-11)

 		
 0.0.6 (2013-10-11)

 		
 0.0.5 (2013-10-11)

 		
 0.0.4 (2013-10-11)

 		
 0.0.3 (2013-10-10)

 		
 0.0.2 (2013-09-20)

 		
 0.0.1 (2014-08-01)

 		
 License

