
HGVS
Release 1.4.0

Jan 27, 2020

Contents

1 Contents 3
1.1 Introduction . 3
1.2 Quick Start . 5
1.3 Installing hgvs . 7
1.4 Key Concepts . 10
1.5 Examples . 12
1.6 Reference Manual . 23
1.7 Privacy Issues . 53
1.8 Contributing . 55
1.9 Getting Help . 59
1.10 Frequently Asked Questions . 60
1.11 Change Log . 61
1.12 License . 91

2 Indices and tables 95

Python Module Index 97

Index 99

i

ii

HGVS, Release 1.4.0

hgvs is a Python package to parse, format, validate, normalize, and map biological sequence variants according to
recommendations of the Human Genome Variation Society. Documentation at https://hgvs.readthedocs.io/

Source | Documentation | Discuss | Issues

Contents 1

https://hgvs.readthedocs.io/
https://github.com/biocommons/hgvs
http://hgvs.readthedocs.org/
https://groups.google.com/forum/#!forum/hgvs-discuss
https://github.com/biocommons/hgvs/issues

HGVS, Release 1.4.0

2 Contents

CHAPTER 1

Contents

1.1 Introduction

Genome, transcript, and protein sequence variants are typically reported using the variation nomenclature
(“varnomen”) recommendations provided by the Human Genome Variation Society (HGVS) (Taschner and den Dun-
nen, 2011). Most variants are deceptively simple looking, such as NM_021960.4:c.740C>T. In reality, the varnomen
standard provides for much more complex concepts and representations.

As high-throughput sequencing becomes commonplace in the investigation and diagnosis of disease, it is essential
that communicating variants from sequencing projects to the scientific community and from diagnostic laboratories to
health care providers is easy and accurate. The HGVS mutation nomenclature recommendations are generally accepted
for the communication of sequence variation: they are widely endorsed by professional organizations, mandated by
numerous journals, and the prevalent representation used by databases and interactive scientific software tools. The
guidelines – originally devised to standardize the representation of variants discovered before the advent of high-
throughput sequencing – are now approved by the HGVS and continue to evolve under the auspices of the Human
Variome Project. Unfortunately, the complexity of biological phenomena and the breadth of the varnomen standard
makes it difficult to implement the standard in software, which in turn makes using the standard in high-throughput
analyses difficult.

This package, hgvs, is an easy-to-use Python library for parsing, representing, formatting, and mapping variants
between genome, transcript, and protein sequences. The current implementation handles most (but not all) of the
varnomen standard for precisely defined sequence variants. The intent is to centralize the subset of HGVS variant
manipulation that is routinely used in modern, high-throughput sequencing analysis.

1.1.1 Features of the hgvs Package

• Convenient object representation. Manipulate variants conceptually rather than by modifying text strings.
Classes model HGVS concepts such as Interval, intronic offsets (in BaseOffsetPosition), uncer-
tainty, and types of variation (hgvs.edit).

• A grammar-based parser. hgvs uses a formal grammar to parse HGVS variants rather than string partitioning
or regular expression pattern matching. This makes parsing easier to understand, extend, and validate.

3

http://varnomen.hgvs.org/
http://varnomen.hgvs.org/
http://www.hgvs.org/
http://www.ncbi.nlm.nih.gov/pubmed/21309030
http://www.ncbi.nlm.nih.gov/pubmed/21309030

HGVS, Release 1.4.0

• Simple variant formatting. Object representations of variants may be turned into HGVS strings simply by
printing or “stringifying” them.

• Robust variant mapping. The package includes tools to map variants between genome, transcript, and pro-
tein sequences (VariantMapper and to perform liftover between two transcript via a common reference
(Projector). The hgvs mapper is specifically designed to reliably handl of regions reference-transcript indel
discrepancy that are not covered by other tools.

• Additional variant validation. The package includes tools to validate variants, separate from syntactic valida-
tion provided by the grammar.

• Extensible data sources. Mapping and sequence data come from UTA by default, but the package includes a
well-defined service interface that enables alternative data sources.

• Extensive automated tests. We run extensive automated tests consisting of all supported variant types on many
genes for every single commit to the source code repository. Test results are displayed publicly and immediately.

Note: Some HGVS recommendations are intentionally absent. This package is primarily concerned with the
subset of the VarNomen recommendations that are relevant for high-throughput sequencing. See issues for a full set
of bugs and feature requests.

1.1.2 Related tools

• Mutalyzer provides a web interface to variant validation and mapping.

• Counsyl hgvs package provides functionality conceptually similar to that of the Invitae hgvs package.

1.1.3 Support

See the section Getting Help for information about connecting with the community, asking questions, and filing bug
reports correctly.

1.1.4 Links

• Variation Nomenclature Recommendations

• Human Genome Variation Society (HGVS)

• Parsley, an Python wrapper for the OMeta Parser Expression Grammar (PEG)

• Universal Transcript Archive (UTA)

1.1.5 References

hgvs: A Python package for manipulating sequence variants using HGVS nomenclature: 2018 Update.

Wang M, Callenberg KM, Dalgleish R, Fedtsov A, Fox N, Freeman PJ, Jacobs KB, Kaleta P, McMurry AJ,
Prlić A, Rajaraman V, Hart RK
Human Mutation. 2018
https://www.ncbi.nlm.nih.gov/pubmed/30129167

A Python package for parsing, validating, mapping and formatting sequence variants using HGVS nomenclature.

4 Chapter 1. Contents

https://github.com/biocommons/uta/
http://varnomen.hgvs.org/
https://github.com/biocommons/hgvs/issues
http://www.humgen.nl/mutalyzer.html
https://github.com/counsyl/hgvs
http://varnomen.hgvs.org/
http://www.hgvs.org/
https://pypi.python.org/pypi/Parsley
http://en.wikipedia.org/wiki/Parsing_expression_grammar
https://github.com/biocommons/uta/
https://www.ncbi.nlm.nih.gov/pubmed/30129167

HGVS, Release 1.4.0

Hart RK, Rico R, Hare E, Garcia J, Westbrook J, Fusaro VA
Bioinformatics. 31(2):268-70 (2014).
https://www.ncbi.nlm.nih.gov/pubmed/25273102

Describing structural changes by extending HGVS sequence variation nomenclature.

Taschner, P. E. M., & den Dunnen, J. T.
Human Mutation, 32(5), 507–11. (2011).
http://www.ncbi.nlm.nih.gov/pubmed/21309030

A formalized description of the standard human variant nomenclature in Extended Backus-Naur Form.

Laros, J. F. J., Blavier, A., den Dunnen, J. T., & Taschner, P. E. M.
BMC Bioinformatics, 12 Suppl 4(Suppl 4), S5. (2011).
http://www.ncbi.nlm.nih.gov/pubmed/21992071

1.2 Quick Start

This tutorial provides a comprehensive example of how to use the HGVS package. Specifically, we’ll:

• install hgvs

• parse a genomic variant

• project the genomic variant to all transcripts

• infer the amino acid changes for coding transcripts

We’ll use rs397509113 in BRCA1. This variant is coincident with an exon in 3 coding transcripts, an intron in 2 other
coding transcripts, and a non-coding transcript.

transcript (c.) protein (p.) comment
NM_007294.3:c.3844del NP_009225.1:p.(Glu1282AsnfsTer25)
NM_007297.3:c.3703del NP_009228.2:p.(Glu1235AsnfsTer25)
NM_007300.3:c.3844del NP_009231.2:p.(Glu1282AsnfsTer25)
NM_007298.3:c.788-655del NP_009229.2:p.? intronic variant
NM_007299.3:c.788-655del NP_009230.2:p.? intronic variant
NR_027676.1:n.3980del non-coding non-coding transcript

1.2.1 Install hgvs

For this demo, you’ll obviously need hgvs. In a reasonably modern environment, the following should suffice:

$ pip install hgvs

More detailed installation instructions are in Installing hgvs.

1.2.2 Start hgvs-shell

The hgvs package includes an executable called hgvs-shell, which sets up hgvs for you. On the command line,
type:

$ hgvs-shell

1.2. Quick Start 5

https://www.ncbi.nlm.nih.gov/pubmed/25273102
http://www.ncbi.nlm.nih.gov/pubmed/21309030
http://www.ncbi.nlm.nih.gov/pubmed/21992071
https://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=397509113

HGVS, Release 1.4.0

This is approximately the same thing as:

$ IPython
>>> from hgvs.easy import *

hgvs.easy connects to data sources and initializes commonly used objects that provide most functionality.

Note: Variant validation, normalization, and projection require access to external data, specifically exon structures,
transcript alignments, and protein accessions. Right now, the only source of this data is via the UTA sister projects.
When you import hgvs.easy, you will connect to publicly available data sources. If you want more information on
the architecture of hgvs and UTA, see Introduction. See Installing hgvs for information about installing data sources
locally for speed and privacy.

1.2.3 Parse the genomic variant

In the hgvs-shell, do:

>>> var_g = parse("NC_000017.11:g.43091687delC")

Note: All functionality in hgvs is provided by Python classes. hgvs.easy exposes common methods with
functional forms also, which are used in this quick start guide. For example, parse(...) above actually calls
`parser.parse(...), where parser is an instance of the hgvs.parser.Parser class.

Parsing a variant results in objects that represent the variant. A SequenceVariant object is comprised of an accession
(ac), an HGVS sequence type (c,g,m,n,r,p), and 0 or more specific sequence changes (posedit – a POSition and
EDIt).:

>>> var_g
SequenceVariant(ac=NC_000017.11, type=g, posedit=43091687del, gene=None)

The posedit is itself an object of the hgvs.posedit.PosEdit class:

>>> var_g.posedit
PosEdit(pos=43091687, edit=del, uncertain=False)

The pos (position) and edit attributes are also objects that can represent intervals and more complex edit operations
like indels. The uncertain flag enables representation of HGVS uncertainty (typically with parentheses around the
uncertain component). “stringifying” a variant regenerates an HGVS variant:

>>> str(var_g)
'NC_000017.11:g.43091687del'

>>> "This is a variant: {v}".format(v=var_g)
'This is a variant: NC_000017.11:g.43091687del'

And, in Python 3, stringification works in f-strings, like so:

> >> f"{var_g}"
'NC_000017.11:g.43091687del'

6 Chapter 1. Contents

HGVS, Release 1.4.0

1.2.4 Validating and Normalizing Variants

hgvs provides functionality to validate and normalize variants:

>>> normalize(var_g)
SequenceVariant(ac=NC_000017.11, type=g, posedit=43091688del, gene=None)

>>> validate(var_g)
True

1.2.5 Projecting variants between sequences

When two sequences have alignments available in , a variant may be “projected” from one sequence to the other.
hgvs supports projecting variants

• from g to c, n

• from c to g, n, p

• from n to c, g

The hgvs.assemblymapper.AssemblyMapper class provides a high-level interface to variant projection.
hgvs.easy initializes AssemblyMapper instances for GRCh37 and GRCh37 as am37 and am38 respectively. For
example:

>>> transcripts = am38.relevant_transcripts(var_g)
>>> sorted(transcripts)
['NM_007294.3', 'NM_007297.3', 'NM_007298.3', 'NM_007299.3', 'NM_007300.3', 'NR_
→˓027676.1']

We can now project the genomic variant, var_g, to each of these transcripts using the g_to_t function, and the
transcript variant to a protein sequnce using the t_to_p function.

>>> for ac in get_relevant_transcripts(var_g):
... var_t = g_to_t(var_g, ac)
... var_p = t_to_p(var_t)
... print("-> " + str(var_t) + " (" + str(var_p) + ") ")
...
-> NM_007294.3:c.3844del (NP_009225.1:p.(Glu1282AsnfsTer25))
-> NM_007297.3:c.3703del (NP_009228.2:p.(Glu1235AsnfsTer25))
-> NM_007298.3:c.788-655del (NP_009229.2:p.?)
-> NM_007299.3:c.788-655del (NP_009230.2:p.?)
-> NM_007300.3:c.3844del (NP_009231.2:p.(Glu1282AsnfsTer25))
-> NR_027676.1:n.3980del (non-coding)

In hgvs, the t type can be either c or n. Only variants on coding sequences (c.) can be projected to a protein
sequence. As a special case, t_to_p returns “non-coding” when the input variant is on a non-coding sequence.

1.3 Installing hgvs

1.3.1 Supported Platforms

hgvs is developed primarily on Ubuntu systems and has been reported to work on Mac. Other platforms and depen-
dency versions are expected to work but have not been tested. Reports of successful operation on other platforms (and
patches to enable this) are appreciated. Python >=3.5 is now required.

1.3. Installing hgvs 7

HGVS, Release 1.4.0

1.3.2 Install Prerequisites

hgvs currently requires PostgreSQL client libraries. On Ubuntu, try:

apt-get install libpq-dev

On a Mac with homebrew:

brew install postgresql

1.3.3 Use a virtual environment

Users are encouraged to use a virtual environment. The most basic method for this is:

$ python3 -m venv venv
$ source venv/bin/activate

Your shell prompt will change upon activation.

See this tutorial for more information about virtual environments.

1.3.4 Installing hgvs from PyPI (preferred)

Install hgvs via pip:

$ pip install hgvs

hgvs will install dependencies automatically.

1.3.5 Installing hgvs from source (for developers)

For the project at https://github.com/biocommons/hgvs.

Fetch the source code:

$ git clone https://github.com/<your github username>/hgvs

Then:

$ source venv/bin/activate # replace with path to your virtual env
$ cd hgvs
$ make develop

1.3.6 Installing SeqRepo (optional)

seqrepo provides an easy and efficient mechanism to maintain a local sequence database.

Install seqrepo:

$ pip install biocommons.seqrepo

Then, choose a file path that has at least 10GB of space available. By default, seqrepo will use /usr/local/share/serepo/.
Make that directory:

8 Chapter 1. Contents

https://realpython.com/python-virtual-environments-a-primer/
https://github.com/biocommons/hgvs
https://github.com/biocommons/biocommons.seqrepo

HGVS, Release 1.4.0

$ mkdir /usr/local/share/seqrepo

Download an instance of the human sequence set:

$ seqrepo -r /usr/local/share/seqrepo pull

You can skip the -r if you use the default /usr/local/share/seqrepo/. This step will take 10-30 minutes, or more for slow
connections.

As with UTA, you tell hgvs to use this feature via an environment variable:

$ export HGVS_SEQREPO_DIR=/usr/local/share/seqrepo/20160906

1.3.7 Local Installation of UTA (optional)

The easiest way to install UTA locally is to use the docker image:

$ docker run -d –name uta_20170117 -p 15032:5432 biocommons/uta:uta_20170117

If you do this, then set:

$ export UTA_DB_URL=postgresql://anonymous@localhost:15032/uta/uta_20170117

If you don’t set this variable, hgvs will use the remote uta database.

1.3.8 Test your installation

hgvs installs hgvs-shell, a command line tool based on IPython. It’s a convenience utility that imports and initializes
frequently-used components. Try this:

(default-2.7) snafu$ hgvs-shell
INFO:root:Starting hgvs-shell 1.0.0a1
INFO:biocommons.seqrepo:biocommons.seqrepo 0.3.1
INFO:hgvs.dataproviders.seqfetcher:Using SeqRepo(/usr/local/share/seqrepo/master)
→˓sequence fetching
INFO:hgvs.dataproviders.uta:connected to postgresql://anonymous:anonymous@localhost/
→˓uta_dev/uta_20170117...

In [1]: v = hp.parse_hgvs_variant("NM_033089.6:c.571C>G")

In [2]: am37.c_to_g(v)
INFO:biocommons.seqrepo.fastadir.fastadir:Opening for reading: /usr/.../1472015601.
→˓985206.fa.bgz
Out[2]: SequenceVariant(ac=NC_000020.10, type=g, posedit=278801C>G)

In [3]: am38.c_to_g(v)
INFO:biocommons.seqrepo.fastadir.fastadir:Opening for reading: /usr/.../1472026864.
→˓4364622.fa.bgz
Out[3]: SequenceVariant(ac=NC_000020.11, type=g, posedit=298157C>G)

1.3.9 Package Versioning

hgvs uses semantic versioning. For a version x.y.z, incrementing x, y, or z denotes backward-incompatible changes,
feature additions, and bug fixes respectively.

1.3. Installing hgvs 9

http://semver.org/

HGVS, Release 1.4.0

Version numbers for released code come directly from the repository tag. Therefore, PyPI version 0.1.2 corresponds
exactly to the repository commit tagged as 0.1.2.

Users (i.e., non-developers) are encouraged to use the PyPI releases and to specify versions to stay within minor
releases for API stability. For example, a line like:

hgvs>=1.0,<2

in setup.py or requirements.txt indicates that version 1.0 (any patch level) is required, and that future 1.x-series releases
are acceptable.

1.4 Key Concepts

This section is intended for all users and provides an understanding of key concepts and components of the hgvs
package.

1.4.1 Reference Sequence Types

The HGVS Recommendations provide for six types of reference sequences. Because the type influences the syntax
and object representation in the hgvs package, it is important to understand these distinctions. A summary of the types
follows:

Type Sequence Coordinates Datum Example

g. DNA Continuous Sequence start NC_000007.13:g.21582936G>A

m. DNA Continuous Sequence start NC_012920.1:m.8993T>C

c. DNA Base-Offset Translation start NM_001277115.1:c.351+115T>C

n. DNA Base-Offset Sequence start NM_000518.4:n.76_92del

r. RNA Base-Offset Sequence start NR_111984.1:r.44g>a

p. AA Continuous Sequence start NP_001264044.1:p.(Ala25Thr)

Datum refers to the definition for position 1 in the sequence. “Sequence start” means the first position of the sequence.
“Translation start” means the position of the ATG that typically starts translation (only for coding transcripts).

Continuous coordinates are the familiar ordinal counting (1, 2, 3, . . .). There are no breaks for intervening sequence.

Base-Offset coordinates use a base position, which is an index in the specified sequence, and an optional offset from
that base position. Non-zero offsets refer to non-coding sequence, such as 5’ UTR, 3’ UTR, or intronic position.
Examples are 22 (with a zero offset), 22+6, and *6. There is no zero position; that is, the positions around the
translation start are . . . , -3, -2, -1, 1, 2, 3,

1.4.2 Variant Object Representation

HGVS variants are represented using classes that represent elemental concepts of an HGVS sequence variant. Each of
the objects contains references to data that define the objects; those data may be Python built in types such as integers

10 Chapter 1. Contents

HGVS, Release 1.4.0

(int) or strings (unicode), or they may be other classes in the hgvs package.

For example, a variant parsed like this:

>>> import hgvs.parser
>>> hgvsparser = hgvs.parser.Parser()
>>> var = hgvsparser.parse_hgvs_variant('NM_001197320.1:c.281C>T')

will generate an object tree like the following:

Fig. 1: A typical object tree created by parsing a variant. Verticies show the property name with property type in
parentheses.

For that variant, the properties may be obtained easily by dot lookup:

>>> var.ac
'NM_001197320.1'
>>> var.type
'c'
>>> var.posedit
PosEdit(pos=281, edit=C>T, uncertain=False)
>>> var.posedit.pos
BaseOffsetInterval(start=281, end=281, uncertain=False)
>>> var.posedit.pos.start, var.posedit.pos.end
(BaseOffsetPosition(base=281, offset=0, datum=Datum.CDS_START, uncertain=False),
BaseOffsetPosition(base=281, offset=0, datum=Datum.CDS_START, uncertain=False))

>>> var.posedit.edit
NARefAlt(ref='C', alt='T', uncertain=False)

The object representation makes it easy to modify variants conceptually rather than textually. For example, if the
previous variant was inferred rather than sequenced, we might wish to declare that it is uncertain, which then causes
the stringified version to contain the edit in parentheses:

>>> var.posedit.uncertain = True
>>> str(var)
'NM_001197320.1:c.(281C>T)'

1.4.3 Variant Mapping Tools

Variant mapping is supported by several modules. Most users will likely be content with hgvs.variant.
AssemblyMapper. For completeness, it may help to understand how all of the mappers relate to each other.

hgvs.alignmentmapper.AlignmentMapper

The AlignmentMapper uses CIGAR to map pairs of exon segments (typically exons in the
transcript and genomic sequences). It is must be instantiated with a transcript accession, refer-
ence accession, and alignment method, and provides functions to map sequence intervals (not
variants) for the specified alignment. It is also accommodates strand orientation.

hgvs.variantmapper.VariantMapper

The VariantMapper uses hgvs.alignmentmapper.AlignmentMapper to provide g<-
>r, r<->c, g<->c, and c->p transformations for SequenceVariant objects. As with the
AlignmentMapper, it must be instantiated with an appropriate transcript, reference, and align-
ment method.

hgvs.assemblymapper.AssemblyMapper

1.4. Key Concepts 11

HGVS, Release 1.4.0

VariantMapper requires that the caller provide a transcript accession and an appropriate refer-
ence sequence, which in turn requires knowing the correct reference sequence. The alignment
method is also required. While the VariantMapper interface serves the general case of mapping
to any sequence (including patch sequences), it is burdensome for the most common case. As-
semblyMapper wraps VariantMapper to provide identical mapping functionality that is tailored
for mapping between a transcript and a primary assembly.

hgvs.projector.Projector

Projector maps variants between transcripts using a common reference and alignment method.
For example, this tool can transfer a variant from one RefSeq to another, or even from an
Ensembl transcript to a RefSeq.

Fig. 2: Mapping tools available in the hgvs package. r1 is a genomic reference (e.g., NC_000014.8). t1 and t2 are
transcripts (e.g., NM_000551.2). p1 is a protein sequence (e.g., NP_012345.6).

1.4.4 External Data Sources

Variant mapping and validation requires access to external data, specifically exon structures, transcript alignments, ac-
cessions, and sequences. In order to isolate the hgvs package from the myriad choices and tradeoffs, these data are pro-
vided through an implementation of the (abstract) Data Provider Interface (hgvs.dataproviders.interface).
Currently, the only concrete implementation of the data provider interface uses UTA, an archive of transcripts, tran-
script sequences, and transcript-reference sequence alignments.

Invitae provides a public UTA instance at uta.biocommons.org:5432 (PostgreSQL). hgvs uses this public UTA
instance by default, so most users won’t need to worry about this aspect of the hgvs package. However, a docker image
of UTA is also available; see Installing hgvs for details.

Alternatively, users may implement their own providers that conform to the data providers interface. See hgvs.
dataproviders.uta for an example.

1.5 Examples

The following examples are derived directly from IPython notebooks in the hgvs source code examples directory.

1.5.1 Creating a SequenceVariant from scratch

0. Overview

A SequenceVariant consists of an accession (a string), a sequence type (a string), and a PosEdit, like this:

var = hgvs.sequencevariant.SequenceVariant(ac=‘NM_01234.5’, type=‘c’, posedit=. . .)

Unsurprisingly, a PosEdit consists of separate position and Edit objects. A position is generally an Interval, which
in turn is comprised of SimplePosition or BaseOffsetPosition objects. An edit is a subclass of Edit, which includes
classes like NARefAlt for substitutions, deletions, and insertions) and Dup (for duplications).

Importantly, each of the objects we’re building has a rule in the parser, which means that you have the tools to serialize
and deserialize (parse) each of the components that we’re about to construct.

12 Chapter 1. Contents

https://github.com/biocommons/uta/
https://github.com/biocommons/hgvs/tree/master/examples

HGVS, Release 1.4.0

1. Make an Interval to define a position of the edit

import hgvs.location
import hgvs.posedit

start = hgvs.location.BaseOffsetPosition(base=200,offset=-6,datum=hgvs.location.Datum.
→˓CDS_START)
start, str(start)

(BaseOffsetPosition(base=200, offset=-6, datum=Datum.CDS_START, uncertain=False),
'200-6')

end = hgvs.location.BaseOffsetPosition(base=22,datum=hgvs.location.Datum.CDS_END)
end, str(end)

(BaseOffsetPosition(base=22, offset=0, datum=Datum.CDS_END, uncertain=False),
'*22')

iv = hgvs.location.Interval(start=start,end=end)
iv, str(iv)

(Interval(start=200-6, end=*22, uncertain=False), '200-6_*22')

2. Make an edit object

import hgvs.edit, hgvs.posedit

edit = hgvs.edit.NARefAlt(ref='A',alt='T')
edit, str(edit)

(NARefAlt(ref='A', alt='T', uncertain=False), 'A>T')

posedit = hgvs.posedit.PosEdit(pos=iv,edit=edit)
posedit, str(posedit)

(PosEdit(pos=200-6_*22, edit=A>T, uncertain=False), '200-6_*22A>T')

3. Make the variant

import hgvs.sequencevariant

var = hgvs.sequencevariant.SequenceVariant(ac='NM_01234.5', type='c', posedit=posedit)
var, str(var)

(SequenceVariant(ac=NM_01234.5, type=c, posedit=200-6_*22A>T),
'NM_01234.5:c.200-6_*22A>T')

Important: It is possible to bogus variants with the hgvs package. For example, the above interval is incompat-
ible with a SNV. See hgvs.validator.Validator for validation options.

1.5. Examples 13

HGVS, Release 1.4.0

4. Update your variant

The stringification happens on-the-fly. That means that you can update components of the variant and see the effects
immediately.

import copy

var2 = copy.deepcopy(var)
var2.posedit.pos.start.base=456
str(var2)

'NM_01234.5:c.456-6_*22A>T'

var2 = copy.deepcopy(var)
var2.posedit.edit.alt='CT'
str(var2)

'NM_01234.5:c.200-6_*22delinsCT'

var2 = copy.deepcopy(var)
str(var2)

'NM_01234.5:c.200-6_*22A>T'

1.5.2 Manuscript Example

import hgvs
hgvs.__version__

'0.3dev-283858cb6466'

Parse an HGVS string into a Python structure

import hgvs.parser
hp = hgvs.parser.Parser()
var_c1 = hp.parse_hgvs_variant('NM_182763.2:c.688+403C>T')
var_c1, var_c1.posedit.pos.start

(SequenceVariant(ac=NM_182763.2, type=c, posedit=688+403C>T),
BaseOffsetPosition(base=688, offset=403, datum=1, uncertain=False))

Open the UTA public data source for mapping and validation

import hgvs.dataproviders.uta
hdp = hgvs.dataproviders.uta.connect()

14 Chapter 1. Contents

HGVS, Release 1.4.0

Project transcript variant NM_182763.2:c.688+403C>T to GRCh37 primary assembly using splign
alignments

import hgvs.variantmapper
vm = hgvs.variantmapper.AssemblyMapper(

hdp, assembly_name='GRCh37', alt_aln_method='splign')
var_g = vm.c_to_g(var_c1)
var_g

SequenceVariant(ac=NC_000001.10, type=g, posedit=150550916G>A)

Project genomic variant to a new transcript

vm.relevant_transcripts(var_g)

['NM_182763.2', 'NM_021960.4', 'NM_001197320.1']

var_c2 = vm.g_to_c(var_g,'NM_001197320.1')
var_c2

SequenceVariant(ac=NM_001197320.1, type=c, posedit=281C>T)

Infer protein changes for these transcript variants

var_p1 = vm.c_to_p(var_c1)
var_p2 = vm.c_to_p(var_c2)
var_p1, var_p2

(SequenceVariant(ac=NP_877495.1, type=p, posedit=?),
SequenceVariant(ac=NP_001184249.1, type=p, posedit=(Ser94Phe)))

Format the results by “stringification”

print("""mapped {var_c1} ({var_p1})
to {var_c2} ({var_p2})

via {var_g}""".format(
var_c1=var_c1, var_p1=var_p1,
var_c2=var_c2, var_p2=var_p2,
var_g=var_g))

mapped NM_182763.2:c.688+403C>T (NP_877495.1:p.?)
to NM_001197320.1:c.281C>T (NP_001184249.1:p.(Ser94Phe))

via NC_000001.10:g.150550916G>A

Validate a variant

1.5. Examples 15

HGVS, Release 1.4.0

import hgvs.validator
import hgvs.exceptions
vr = hgvs.validator.Validator(hdp=hdp)
try:

vr.validate(hp.parse_hgvs_variant('NM_001197320.1:c.281C>T'))
vr.validate(hp.parse_hgvs_variant('NM_001197320.1:c.281A>T'))

except hgvs.exceptions.HGVSError as e:
print(e)

NM_001197320.1:c.281A>T: Variant reference does not agree with reference sequence

1.5.3 Automated liftover of NM_001261456.1:c.1762A>G (rs509749) to
NM_001261457.1 via GRCh37

Automatically project variant from one transcript to another via common reference.

http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=509749

import hgvs.parser
hgvsparser = hgvs.parser.Parser()
var_c1 = hgvsparser.parse_hgvs_variant('NM_001261456.1:c.1762A>G')

import hgvs.dataproviders.uta
hdp = hgvs.dataproviders.uta.connect()

import hgvs.projector
pj = hgvs.projector.Projector(hdp=hdp,

alt_ac='NC_000001.10',
src_ac=var_c1.ac,
dst_ac='NM_001261457.1')

pj.project_variant_forward(var_c1)

SequenceVariant(ac=NM_001261457.1, type=c, posedit=1534A>G)

1.5.4 Manual liftover of NM_001261456.1:c.1762A>G (rs509749) to NM_001261457.1
via GRCh37

http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=509749

import hgvs.dataproviders.uta
import hgvs.variantmapper
import hgvs.parser

hdp = hgvs.dataproviders.uta.connect()
variantmapper = hgvs.variantmapper.VariantMapper(hdp)
hgvsparser = hgvs.parser.Parser()

var_c1 = hgvsparser.parse_hgvs_variant('NM_001261456.1:c.1762A>G')
var_p1 = variantmapper.c_to_p(var_c1, None)
var_c1, var_p1

16 Chapter 1. Contents

http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=509749
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=509749

HGVS, Release 1.4.0

(SequenceVariant(ac=NM_001261456.1, type=c, posedit=1762A>G),
SequenceVariant(ac=MD5_e999a940ca422ec8cab9bc3cc64e0d7d, type=p,
→˓posedit=(Met588Val)))

var_g = variantmapper.c_to_g(var_c1,'NC_000001.10')
var_g

SequenceVariant(ac=NC_000001.10, type=g, posedit=160793560A>G)

txs = hdp.get_tx_for_gene('LY9')
txs

[['LY9', 30, 1998, 'ENST00000263285', 'NC_000001.10', 'genebuild'],
['LY9', 1, 583, 'ENST00000368039', 'NC_000001.10', 'genebuild'],
['LY9', 0, 1648, 'ENST00000392203', 'NC_000001.10', 'genebuild'],
['LY9', 0, 1833, 'ENST00000368037', 'NC_000001.10', 'genebuild'],
['LY9', 211, 1024, 'ENST00000368035', 'NC_000001.10', 'genebuild'],
['LY9', 50, 1616, 'ENST00000341032', 'NC_000001.10', 'genebuild'],
['LY9', 170, 1751, 'ENST00000368041', 'NC_000001.10', 'genebuild'],
['LY9', 1094, 1907, 'ENST00000368040', 'NC_000001.10', 'genebuild'],
['LY9', 114, 2040, 'NM_001261456.1', 'AC_000133.1', 'splign'],
['LY9', 114, 2040, 'NM_001261456.1', 'NC_000001.10', 'blat'],
['LY9', 114, 2040, 'NM_001261456.1', 'NC_000001.10', 'splign'],
['LY9', 114, 2040, 'NM_001261456.1', 'NC_018912.2', 'splign'],
['LY9', 114, 696, 'NM_001033667.2', 'AC_000133.1', 'splign'],
['LY9', 114, 696, 'NM_001033667.2', 'NC_000001.10', 'blat'],
['LY9', 114, 696, 'NM_001033667.2', 'NC_000001.10', 'splign'],
['LY9', 114, 696, 'NM_001033667.2', 'NC_018912.2', 'splign'],
['LY9', 114, 2082, 'NM_002348.3', 'AC_000133.1', 'splign'],
['LY9', 114, 2082, 'NM_002348.3', 'NC_000001.10', 'blat'],
['LY9', 114, 2082, 'NM_002348.3', 'NC_000001.10', 'splign'],
['LY9', 114, 2082, 'NM_002348.3', 'NC_018912.2', 'splign'],
['LY9', 114, 1812, 'NM_001261457.1', 'AC_000133.1', 'splign'],
['LY9', 114, 1812, 'NM_001261457.1', 'NC_000001.10', 'blat'],
['LY9', 114, 1812, 'NM_001261457.1', 'NC_000001.10', 'splign'],
['LY9', 114, 1812, 'NM_001261457.1', 'NC_018912.2', 'splign']]

var_c2 = variantmapper.g_to_c(var_g,'NM_001261457.1',alt_aln_method='splign')
var_p2 = variantmapper.c_to_p(var_c2, None)
var_c2, var_p2

(SequenceVariant(ac=NM_001261457.1, type=c, posedit=1534A>G),
SequenceVariant(ac=MD5_921ebefe79bff479f4bfa17e133fc084, type=p,
→˓posedit=(Met512Val)))

1.5.5 Using hgvs

This notebook demonstrates major features of the hgvs package.

import hgvs
hgvs.__version__

1.5. Examples 17

HGVS, Release 1.4.0

'0.5.0a6.dev3+nf998c16a46b3.d20161012'

Variant I/O

Initialize the parser

You only need to do this once per process
import hgvs.parser
hp = hgvsparser = hgvs.parser.Parser()

Parse a simple variant

v = hp.parse_hgvs_variant("NC_000007.13:g.21726874G>A")

v

SequenceVariant(ac=NC_000007.13, type=g, posedit=21726874G>A)

v.ac, v.type

('NC_000007.13', 'g')

v.posedit

PosEdit(pos=21726874, edit=G>A, uncertain=False)

v.posedit.pos

Interval(start=21726874, end=21726874, uncertain=False)

v.posedit.pos.start

SimplePosition(base=21726874, uncertain=False)

Parsing complex variants

v = hp.parse_hgvs_variant("NM_003777.3:c.13552_*36del57")

v.posedit.pos.start, v.posedit.pos.end

(BaseOffsetPosition(base=13552, offset=0, datum=1, uncertain=False),
BaseOffsetPosition(base=36, offset=0, datum=2, uncertain=False))

v.posedit.edit

18 Chapter 1. Contents

HGVS, Release 1.4.0

NARefAlt(ref=57, alt=None, uncertain=False)

Formatting variants

All objects may be formatted simply by “stringifying” or printing them using str, print(), or "".format().

str(v)

'NM_003777.3:c.13552_*36del57'

print(v)

NM_003777.3:c.13552_*36del57

"{v} spans the CDS end".format(v=v)

'NM_003777.3:c.13552_*36del57 spans the CDS end'

Projecting variants between sequences

Set up a dataprovider

Mapping variants requires exon structures, alignments, CDS bounds, and raw sequence. These are provided by a
hgvs.dataprovider instance. The only dataprovider provided with hgvs uses UTA. You may write your own by
subsclassing hgvs.dataproviders.interface.

import hgvs.dataproviders.uta
hdp = hgvs.dataproviders.uta.connect()

Initialize mapper classes

The VariantMapper class projects variants between two sequence accessions using alignments from a specified source.
In order to use it, you must know that two sequences are aligned. VariantMapper isn’t demonstrated here.

AssemblyMapper builds on VariantMapper and handles identifying appropriate sequences. It is configured for a
particular genome assembly.

import hgvs.variantmapper
#vm = variantmapper = hgvs.variantmapper.VariantMapper(hdp)
am37 = easyvariantmapper = hgvs.variantmapper.AssemblyMapper(hdp, assembly_name=
→˓'GRCh37')
am38 = easyvariantmapper = hgvs.variantmapper.AssemblyMapper(hdp, assembly_name=
→˓'GRCh38')

c_to_g

This is the easiest case because there is typically only one alignment between a transcript and the genome. (Exceptions
exist for pseudoautosomal regions.)

1.5. Examples 19

HGVS, Release 1.4.0

var_c = hp.parse_hgvs_variant("NM_015120.4:c.35G>C")
var_g = am37.c_to_g(var_c)
var_g

am38.c_to_g(var_c)

g_to_c

In order to project a genomic variant onto a transcript, you must tell the AssemblyMapper which transcript to use.

am37.relevant_transcripts(var_g)

['NM_015120.4']

am37.g_to_c(var_g, "NM_015120.4")

SequenceVariant(ac=NM_015120.4, type=c, posedit=35T>C)

c_to_p

var_p = am37.c_to_p(var_c)
str(var_p)

'NP_055935.4:p.(Leu12Pro)'

var_p.posedit.uncertain = False
str(var_p)

'NP_055935.4:p.Leu12Pro'

Projecting in the presence of a genome-transcript gap

As of Oct 2016, 1033 RefSeq transcripts in 433 genes have gapped alignments. These gaps require special handlingin
order to maintain the correspondence of positions in an alignment. hgvs uses the precomputed alignments in UTA to
correctly project variants in exons containing gapped alignments.

This example demonstrates projecting variants in the presence of a gap in the alignment of NM_015120.4 (ALMS1)
with GRCh37 chromosome 2. (The alignment with GRCh38 is similarly gapped.) Specifically, the adjacent genomic
positions 73613031 and 73613032 correspond to the non-adjacent CDS positions 35 and 39.

NM_015120.4 c 15 > > 58
NM_015120.4 n 126 > CCGGGCGAGCTGGAGGAGGAGGAG > 169

||||||||||| |||||||||| 21=3I20=
NC_000002.11 g 73613021 > CCGGGCGAGCT---GGAGGAGGAG > 73613041
NC_000002.11 g 73613021 < GGCCCGCTCGA---CCTCCTCCTC < 73613041

str(am37.c_to_g(hp.parse_hgvs_variant("NM_015120.4:c.35G>C")))

20 Chapter 1. Contents

HGVS, Release 1.4.0

'NC_000002.11:g.73613031T>C'

str(am37.c_to_g(hp.parse_hgvs_variant("NM_015120.4:c.39G>C")))

'NC_000002.11:g.73613032G>C'

Normalizing variants

In hgvs, normalization means shifting variants 3’ (as requried by the HGVS nomenclature) as well as rewriting vari-
ants. The variant “NM_001166478.1:c.30_31insT” is in a poly-T run (on the transcript). It should be shifted 3’ and is
better written as dup, as shown below:

* NC_000006.11:g.
→˓49917127dupA
NC_000006.11 g 49917117 > AGAAAGAAAAATAAAACAAAG > 49917137
NC_000006.11 g 49917117 < TCTTTCTTTTTATTTTGTTTC < 49917137

||||||||||||||||||||| 21=
NM_001166478.1 n 41 < TCTTTCTTTTTATTTTGTTTC < 21 NM_001166478.1:n.
→˓35dupT
NM_001166478.1 c 41 < < 21 NM_001166478.1:c.30_
→˓31insT

import hgvs.normalizer
hn = hgvs.normalizer.Normalizer(hdp)

v = hp.parse_hgvs_variant("NM_001166478.1:c.30_31insT")
str(hn.normalize(v))

'NM_001166478.1:c.35dupT'

A more complex normalization example

This example is based on https://github.com/biocommons/hgvs/issues/382/.

NC_000001.11 g 27552104 > CTTCACACGCATCCTGACCTTG > 27552125
NC_000001.11 g 27552104 < GAAGTGTGCGTAGGACTGGAAC < 27552125

|||||||||||||||||||||| 22=
NM_001029882.3 n 843 < GAAGTGTGCGTAGGACTGGAAC < 822
NM_001029882.3 c 12 < < -10

^^
NM_001029882.3:c.1_2del
NM_001029882.3:n.832_833delAT
NC_000001.11:g.27552114_27552115delAT

am38.c_to_g(hp.parse_hgvs_variant("NM_001029882.3:c.1A>G"))

SequenceVariant(ac=NC_000001.11, type=g, posedit=27552115T>C)

am38.c_to_g(hp.parse_hgvs_variant("NM_001029882.3:c.2T>G"))

1.5. Examples 21

https://github.com/biocommons/hgvs/issues/382/

HGVS, Release 1.4.0

SequenceVariant(ac=NC_000001.11, type=g, posedit=27552114A>C)

am38.c_to_g(hp.parse_hgvs_variant("NM_001029882.3:c.1_2del"))

SequenceVariant(ac=NC_000001.11, type=g, posedit=27552114_27552115delAT)

The genomic coordinates for the SNVs at c.1 and c.2 match those for the del at c.1_2. Good!

Now, notice what happens with c.1_3del, c.1_4del, and c.1_5del:

am38.c_to_g(hp.parse_hgvs_variant("NM_001029882.3:c.1_3del"))

SequenceVariant(ac=NC_000001.11, type=g, posedit=27552114_27552116delATC)

am38.c_to_g(hp.parse_hgvs_variant("NM_001029882.3:c.1_4del"))

SequenceVariant(ac=NC_000001.11, type=g, posedit=27552112_27552115delGCAT)

am38.c_to_g(hp.parse_hgvs_variant("NM_001029882.3:c.1_5del"))

SequenceVariant(ac=NC_000001.11, type=g, posedit=27552112_27552116delGCATC)

Explanation:

On the transcript, c.1_2delAT deletes AT from . . . AGGATGCG. . . , resulting in . . . AGGGCG. . . . There’s no ambiguity
about what sequence was actually deleted.

c.1_3delATG deletes ATG, resulting in . . . AGGCG. . . . Note that you could also get this result by deleting GAT. This
is an example of an indel that is subject to normalization and hgvs does this.

c.1_4delATGC and 1_5delATGCG have similar behaviors.

Normalization is always 3’ with respect to the reference sequence. So, after projecting from a - strand transcript to the
genome, normalization will go in the opposite direction to the transcript. It will have roughly the same effect as being
5’ shifted on the transcript (but revcomp’d).

For more precise control, see the normalize and replace_reference options of AssemblyMapper.

Validating variants

hgvs.validator.Validator is a composite of two classes, hgvs.validator.IntrinsicValidator
and hgvs.validator.ExtrinsicValidator. Intrinsic validation evaluates a given variant for internal con-
sistency, such as requiring that insertions specify adjacent positions. Extrinsic validation evaluates a variant using
external data, such as ensuring that the reference nucleotide in the variant matches that implied by the reference
sequence and position. Validation returns True if successful, and raises an exception otherwise.

import hgvs.validator
hv = hgvs.validator.Validator(hdp)

hv.validate(hp.parse_hgvs_variant("NM_001166478.1:c.30_31insT"))

True

22 Chapter 1. Contents

HGVS, Release 1.4.0

from hgvs.exceptions import HGVSError

try:
hv.validate(hp.parse_hgvs_variant("NM_001166478.1:c.30_32insT"))

except HGVSError as e:
print(e)

insertion length must be 1

1.6 Reference Manual

1.6.1 Grammar

Grammar Overview

Note: This section is being written.

Provide an overview of the grammar rules Also consider a document link to the grammar itself

HGVS Railroad Diagram

Generated from hgvs (https://github.com/biocommons/hgvs)
1b1f788ef473+ default tip
See the source code for the OMeta-based grammar

Variants

Intervals

1.6. Reference Manual 23

https://github.com/biocommons/hgvs

HGVS, Release 1.4.0

Localized Edits

Positions

24 Chapter 1. Contents

HGVS, Release 1.4.0

Edits (sequence changes)

1.6. Reference Manual 25

HGVS, Release 1.4.0

Sequences

Residues

Remaining rules

26 Chapter 1. Contents

HGVS, Release 1.4.0

HGVS Railroad Diagram

Generated from hgvs (https://github.com/biocommons/hgvs)
1b1f788ef473+ default tip
See the source code for the OMeta-based grammar

Variants

Intervals

1.6. Reference Manual 27

https://github.com/biocommons/hgvs

HGVS, Release 1.4.0

Localized Edits

Positions

28 Chapter 1. Contents

HGVS, Release 1.4.0

Edits (sequence changes)

1.6. Reference Manual 29

HGVS, Release 1.4.0

Sequences

Residues

Remaining rules

30 Chapter 1. Contents

HGVS, Release 1.4.0

1.6.2 Modules

1.6. Reference Manual 31

HGVS, Release 1.4.0

Module Overview

Module Classes Description
Variant Object Representation
hgvs.edit

hgvs.edit.AAExt

hgvs.edit.AAFs

hgvs.edit.AARefAlt

hgvs.edit.AASub

hgvs.edit.Dup

hgvs.edit.Edit

hgvs.edit.NACopy

hgvs.edit.NADupN

hgvs.edit.NARefAlt

hgvs.edit.Repeat

hgvs.edit classes implement
various kinds of sequence edits.
For nucleic acids, these edits are
independent of location; amino
acids edits currently contain the
location.

hgvs.hgvsposition

hgvs.hgvsposition.
HGVSPosition

A non-standard representation
of a sequence location with-
out an edit. For example,
NM_012345.6:c.72+5_73-2.

hgvs.location

hgvs.location.AAPosition

hgvs.location.
BaseOffsetPosition

hgvs.location.Interval

hgvs.location.
SimplePosition

Various kinds of locations. Interval
is a span from start to end; the
others are points in a sequence.

hgvs.posedit

hgvs.posedit.PosEdit

A position+edit (really, an interval
and edit).

hgvs.variant

hgvs.variant.
SequenceVariant

A sequence variant of any type
(g, c, m, r, n, p). A Se-
quenceVariant is returned by
hgvs.parser.Parser, and
it is the input and output type
for hgvs.variantmapper.
VariantMapper operations.

Parsing and Formatting
hgvs.parser

hgvs.parser.Parser

Coordinate, Interval, and Variant Mapping/Transformation
hgvs.projector

hgvs.projector.
Projector

hgvs.alignmentmapper

hgvs.alignmentmapper.
AlignmentMapper

hgvs.variantmapper

hgvs.variantmapper.
VariantMapper

hgvs.assemblymapper.
AssemblyMapper

Variant Normalization and Validation
hgvs.normalizer

hgvs.normalizer.
Normalizer

hgvs.validator

hgvs.validator.
Validator

hgvs.validator.
IntrinsicValidator

hgvs.validator.
ExtrinsicValidator

External Data Providers
hgvs.dataproviders.
interface

hgvs.dataproviders.
interface.Interface

hgvs.dataproviders.uta

hgvs.dataproviders.uta.
UTABase

32 Chapter 1. Contents

HGVS, Release 1.4.0

Top-level module

hgvs is a package to parse, format, and manipulate biological sequence variants. See https://github.com/biocommons/
hgvs/ for details.

Example use:

>>> import hgvs.dataproviders.uta
>>> import hgvs.parser
>>> import hgvs.variantmapper

start with these variants as strings >>> hgvs_g, hgvs_c = “NC_000007.13:g.36561662C>T”,
“NM_001637.3:c.1582G>A”

parse the genomic variant into a Python structure >>> hp = hgvs.parser.Parser() >>> var_g =
hp.parse_hgvs_variant(hgvs_g) >>> var_g SequenceVariant(ac=NC_000007.13, type=g, posedit=36561662C>T,
gene=None)

SequenceVariants are composed of structured objects, e.g., >>> var_g.posedit.pos.start SimplePosi-
tion(base=36561662, uncertain=False)

format by stringification >>> str(var_g) ‘NC_000007.13:g.36561662C>T’

initialize the mapper for GRCh37 with splign-based alignments >>> hdp = hgvs.dataproviders.uta.connect() >>>
am = hgvs.assemblymapper.AssemblyMapper(hdp, . . . assembly_name=”GRCh37”, alt_aln_method=”splign”, . . .
replace_reference=True)

identify transcripts that overlap this genomic variant >>> transcripts = am.relevant_transcripts(var_g) >>>
sorted(transcripts) [‘NM_001177506.1’, ‘NM_001177507.1’, ‘NM_001637.3’]

map genomic variant to one of these transcripts >>> var_c = am.g_to_c(var_g, “NM_001637.3”)
>>> var_c SequenceVariant(ac=NM_001637.3, type=c, posedit=1582G>A, gene=None) >>> str(var_c)
‘NM_001637.3:c.1582G>A’

CDS coordinates use BaseOffsetPosition to support intronic offsets >>> var_c.posedit.pos.start BaseOffsetPosi-
tion(base=1582, offset=0, datum=Datum.CDS_START, uncertain=False)

Configuration

hgvs.config

The hgvs package uses a single, package-wide configuration instance to control package behavior. The hgvs.config
module provides that configuration instance, via the hgvs.global_config variable.

You should not import hgvs.config directly.

Config are read from an ini-format file. hgvs.config implements a thin wrapper on the ConfigParser instance in order
to provide attribute based lookups (rather than key). It also returns heuristically typed values (e.g., “True” becomes
True).

Although keys are settable, they are stringified on setting and type-inferred on getting, which means that round-tripping
works only for str, int, and boolean.

>>> import hgvs.config

hgvs.config.global_config
Package-wide (“global”) configuration, initialized with package defaults. Setting configuration in this object
will change global behavior of the hgvs package.

global_config, an instance of :ref:hgvs.config.Config, supports reading ini-like files that updates

1.6. Reference Manual 33

https://github.com/biocommons/hgvs/
https://github.com/biocommons/hgvs/

HGVS, Release 1.4.0

class hgvs.config.Config(extended_interpolation=True)
Bases: object

provides an attribute-based lookup of configparser sections and settings.

read_stream(flo)
read configuration from ini-formatted file-like object

class hgvs.config.ConfigGroup(section)
Bases: object

The defaults are:

[mapping]
alt_aln_method = splign
assembly = GRCh38
in_par_assume = X
inferred_p_is_uncertain = True
normalize = True
replace_reference = True

[formatting]
p_3_letter = True
p_term_asterisk = False

[normalizer]
cross_boundaries = False
shuffle_direction = 3
validate = True
window_size = 20

[lru_cache]
maxsize = 100

Variant Object Representation

hgvs.edit

Representation of edit operations in HGVS variants

NARefAlt and AARefAlt are abstractions of several major variant types. They are distinguished by whether the ref
and alt elements of the structure. The HGVS grammar for NA and AA are subtly different (e.g., the ref AA in a protein
substitution is part of the location).

class hgvs.edit.AAExt(ref=None, alt=None, aaterm=None, length=None, uncertain=False)
Bases: hgvs.edit.Edit

aaterm

alt

format(conf=None)

length

ref

type
return the type of this Edit

Returns edit type (str)

34 Chapter 1. Contents

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

HGVS, Release 1.4.0

uncertain

class hgvs.edit.AAFs(ref=None, alt=None, length=None, uncertain=False)
Bases: hgvs.edit.Edit

alt

format(conf=None)

length

ref

type
return the type of this Edit

Returns edit type (str)

uncertain

class hgvs.edit.AARefAlt(ref=None, alt=None, uncertain=False, init_met=False)
Bases: hgvs.edit.Edit

alt

format(conf=None)

init_met

ref

type
return the type of this Edit

Returns edit type (str)

uncertain

class hgvs.edit.AASub(ref=None, alt=None, uncertain=False, init_met=False)
Bases: hgvs.edit.AARefAlt

format(conf=None)

type
return the type of this Edit

Returns edit type (str)

class hgvs.edit.Conv(from_ac=None, from_type=None, from_pos=None, uncertain=False)
Bases: hgvs.edit.Edit

Conversion

from_ac

from_pos

from_type

type
return the type of this Edit

Returns edit type (str)

uncertain

class hgvs.edit.Dup(ref=None, uncertain=False)
Bases: hgvs.edit.Edit

1.6. Reference Manual 35

HGVS, Release 1.4.0

format(conf=None)

ref

ref_s
returns a string representing the ref sequence, if it is not None and smells like a sequence

type
return the type of this Edit

Returns edit type (str)

uncertain

class hgvs.edit.Edit
Bases: object

format(conf=None)

class hgvs.edit.Inv(ref=None, uncertain=False)
Bases: hgvs.edit.Edit

Inversion

ref

ref_n
returns an integer, either from the seq instance variable if it’s a number, or None otherwise

ref_s

type
return the type of this Edit

Returns edit type (str)

uncertain

class hgvs.edit.NACopy(copy=None, uncertain=False)
Bases: hgvs.edit.Edit

Represent copy number variants (Invitae-specific use)

This class is intended for Invitae use only and does not represent a standard HGVS concept. The class may be
changed, moved, or removed without notice.

copy

type
return the type of this Edit

Returns edit type (str)

uncertain

class hgvs.edit.NARefAlt(ref=None, alt=None, uncertain=False)
Bases: hgvs.edit.Edit

represents substitutions, deletions, insertions, and indels.

Variables

• ref – reference sequence or length

• alt – alternate sequence

• uncertain – boolean indicating whether the variant is uncertain/undetermined

36 Chapter 1. Contents

https://docs.python.org/3/library/functions.html#object

HGVS, Release 1.4.0

alt

format(conf=None)

ref

ref_n
returns an integer, either from the ref instance variable if it’s a number, or the length of ref if it’s a string,
or None otherwise

>>> NARefAlt("ACGT").ref_n
4
>>> NARefAlt("7").ref_n
7
>>> NARefAlt(7).ref_n
7

ref_s
returns a string representing the ref sequence, if it is not None and smells like a sequence

>>> NARefAlt("ACGT").ref_s
u'ACGT'
>>> NARefAlt("7").ref_s
>>> NARefAlt(7).ref_s

type
return the type of this Edit

Returns edit type (str)

uncertain

class hgvs.edit.Repeat(ref=None, min=None, max=None, uncertain=False)
Bases: hgvs.edit.Edit

format(conf=None)

max

min

ref

type
return the type of this Edit

Returns edit type (str)

uncertain

hgvs.hgvsposition

Represent partial HGVS tags that refer to a position without alleles

class hgvs.hgvsposition.HGVSPosition(ac, type, pos, gene=None)
Bases: object

HGVSPosition – Represent partial HGVS tags that refer to a position without alleles

Parameters

• ac (str) – sequence accession

1.6. Reference Manual 37

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str

HGVS, Release 1.4.0

• type (str) – type of sequence and coordinate

• pos (str) – sequence position

• gene (str) – gene symbol (may be None)

ac

gene

pos

type

hgvs.location

Provides classes for dealing with the locations of HGVS variants

This module provides for Representing the location of variants in HGVS nomenclature, including:

• integers and integer intervals (e.g., NC_012345.6:g.3403243_3403248A>C)

• CDS positions and intervals (e.g., NM_01234.5:c.56+12_56+14delAC)

• CDS stop coordinates (e.g., NM_01234.5:c.*13A>C)

Classes:

• SimplePosition – a simple integer

• BaseOffsetPosition – a position with datum, base, and offset for c. and r. coordinates

• AAPosition – an amino acid position (with AA)

• Interval – an interval of Positions

class hgvs.location.AAPosition(base=None, aa=None, uncertain=False)
Bases: object

aa

base

format(conf=None)

is_uncertain
return True if the position is marked uncertain or undefined

pos
return base, for backward compatibility

uncertain

validate()

class hgvs.location.BaseOffsetInterval(start=None, end=None, uncertain=False)
Bases: hgvs.location.Interval

BaseOffsetInterval isa Interval of BaseOffsetPositions. The only additional functionality over Interval is to
ensure that the dutum of end and start are compatible.

check_datum()

class hgvs.location.BaseOffsetPosition(base=None, offset=0, datum=<Datum.SEQ_START:
1>, uncertain=False)

Bases: object

38 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

HGVS, Release 1.4.0

Class for dealing with CDS coordinates in transcript variants.

This class models CDS positions using a base coordinate, which is measured relative to a specified datum
(CDS_START or CDS_END), and an offset, which is 0 for exonic positions and non-zero for intronic positions.
Positions and offsets are 1-based, with no 0, per the HGVS recommendations. (If you”re using this with UTA,
be aware that UTA uses interbase coordinates.)

hgvs datum base offset meaning
r.55 SEQ_START 55 0 RNA position 55
c.55 CDS_START 55 0 CDS position 55
c.55 CDS_START 55 0 CDS position 55
c.55+1 CDS_START 55 1 intronic variant +1 from boundary
c.-55 CDS_START -55 0 5’ UTR variant, 55 nt upstream of ATG
c.1 CDS_START 1 0 start codon
c.1234 CDS_START 1234 0 stop codon (assuming CDS length is 1233)
c.*1 CDS_END 0 1 STOP + 1
c.*55 CDS_END 0 55 3’ UTR variant, 55 nt after STOP

base

datum

format(conf)

is_intronic
returns True if the variant is intronic (if the offset is None or non-zero)

is_uncertain
return True if the position is marked uncertain or undefined

offset

uncertain

validate()

class hgvs.location.Interval(start=None, end=None, uncertain=False)
Bases: object

end

format(conf=None)

is_uncertain
return True if the position is marked uncertain or undefined

start

uncertain

validate()

class hgvs.location.SimplePosition(base=None, uncertain=False)
Bases: object

base

format(conf)

is_uncertain
return True if the position is marked uncertain or undefined

uncertain

1.6. Reference Manual 39

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

HGVS, Release 1.4.0

validate()

hgvs.posedit

implements a (position,edit) tuple that represents a localized sequence change

class hgvs.posedit.PosEdit(pos=None, edit=None, uncertain=False)
Bases: object

represents a simple variant, consisting of a single position and edit pair

edit

format(conf=None)
Formatting the string of PosEdit

length_change(on_error_raise=True)
Returns the net length change for this posedit.

The method for computing the net length change depends on the type of variant (dup, del, ins, etc). The
length_change method hides this complexity from callers.

Parameters

• self (hgvs.posedit.PosEdit) – a PosEdit instance

• on_error_raise (bool) – whether to raise an exception on errors

Returns A signed int for the net change in length. Negative values imply net deletions, 0 implies
a balanced insertion and deletion (e.g., SNV), and positive values imply a net insertion.

Raises HGVSUnsupportedOperationError – When determining the length for this vari-
ant type is ill-defined or unsupported.

There are many circumstances in which the net length change cannot be determined, is ill-defined, or is
unsupported. In these cases, the result depends on the value of on_error_raise: when on_error_raise is
True, an exception is raised; when False, the exception is caught and None is returned. Callers might wish
to pass on_error_raise=False in list comprehensions to avoid dealing with exceptions.

pos

uncertain

validate()

hgvs.sequencevariant

represents simple sequence-based variants

class hgvs.sequencevariant.SequenceVariant(ac, type, posedit, gene=None)
Bases: object

represents a basic HGVS variant. The only requirement is that each component can be stringified; for example,
passing pos as either a string or an hgvs.location.CDSInterval (for example) are both intended uses

ac

fill_ref(hdp)

format(conf=None)
Formatting the stringification of sequence variants

40 Chapter 1. Contents

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object

HGVS, Release 1.4.0

Parameters conf – a dict comprises formatting options. None is to use global settings.

See hgvs.config.

gene

posedit

type

validate()

Parsing and Formatting

hgvs.parser

Provides parser for HGVS strings and HGVS-related conceptual components, such as intronic-offset coordiates

class hgvs.parser.Parser(grammar_fn=’/home/docs/.cache/Python-Eggs/hgvs-1.4.0-py3.7.egg-
tmp/hgvs/_data/hgvs.pymeta’, expose_all_rules=False)

Bases: object

Provides comprehensive parsing of HGVS varaint strings (i.e., variants represented according to the Human
Genome Variation Society recommendations) into Python representations. The class wraps a Parsing Expression
Grammar, exposing rules of that grammar as methods (prefixed with parse_) that parse an input string according
to the rule. The class exposes all rules, so that it’s possible to parse both full variant representations as well as
components, like so:

>>> hp = Parser()
>>> v = hp.parse_hgvs_variant("NM_01234.5:c.22+1A>T")
>>> v
SequenceVariant(ac=NM_01234.5, type=c, posedit=22+1A>T, gene=None)
>>> v.posedit.pos
BaseOffsetInterval(start=22+1, end=22+1, uncertain=False)
>>> i = hp.parse_c_interval("22+1")
>>> i
BaseOffsetInterval(start=22+1, end=22+1, uncertain=False)

The parse_hgvs_variant and parse_c_interval methods correspond to the hgvs_variant and c_interval rules in
the grammar, respectively.

As a convenience, the Parser provides the parse method as a shorthand for parse_hgvs_variant: >>> v =
hp.parse(“NM_01234.5:c.22+1A>T”) >>> v SequenceVariant(ac=NM_01234.5, type=c, posedit=22+1A>T,
gene=None)

Because the methods are generated on-the-fly and depend on the grammar that is loaded at runtime, a full list
of methods is not available in the documentation. However, the list of rules/methods is available via the rules
instance variable.

A few notable methods are listed below:

parse_hgvs_variant() parses any valid HGVS string supported by the grammar.

>>> hp.parse_hgvs_variant("NM_01234.5:c.22+1A>T")
SequenceVariant(ac=NM_01234.5, type=c, posedit=22+1A>T, gene=None)
>>> hp.parse_hgvs_variant("NP_012345.6:p.Ala22Trp")
SequenceVariant(ac=NP_012345.6, type=p, posedit=Ala22Trp, gene=None)

The hgvs_variant rule iteratively attempts parsing using the major classes of HGVS variants. For slight im-
provements in efficiency, those rules may be invoked directly:

1.6. Reference Manual 41

https://docs.python.org/3/library/functions.html#object

HGVS, Release 1.4.0

>>> hp.parse_p_variant("NP_012345.6:p.Ala22Trp")
SequenceVariant(ac=NP_012345.6, type=p, posedit=Ala22Trp, gene=None)

Similarly, components of the underlying structure may be parsed directly as well:

>>> hp.parse_c_posedit("22+1A>T")
PosEdit(pos=22+1, edit=A>T, uncertain=False)
>>> hp.parse_c_interval("22+1")
BaseOffsetInterval(start=22+1, end=22+1, uncertain=False)

parse(v)
parse HGVS variant v, returning a SequenceVariant

Parameters v (str) – an HGVS-formatted variant as a string

Return type SequenceVariant

Mapping

hgvs.assemblymapper

class hgvs.assemblymapper.AssemblyMapper(hdp, assembly_name=’GRCh38’,
alt_aln_method=’splign’, normalize=True,
prevalidation_level=’EXTRINSIC’,
in_par_assume=’X’, replace_reference=True,
add_gene_symbol=False, *args, **kwargs)

Bases: hgvs.variantmapper.VariantMapper

Provides simplified variant mapping for a single assembly and transcript-reference alignment method.

AssemblyMapper inherits VariantMapper, which provides all projection functionality, and adds:

• Automatic selection of genomic sequence accession

• Transcript selection from genomic coordinates

• Normalization after projection

• Special handling for PAR regions

AssemblyMapper is instantiated with an assembly name and alt_aln_method. These enable the following con-
veniences over VariantMapper:

• The assembly and alignment method are used to automatically select an appropriate chromosomal refer-
ence sequence when mapping from a transcript to a genome (i.e., c_to_g(. . .) and n_to_g(. . .)).

• A new method, relevant_trancripts(g_variant), returns a list of transcript accessions available for the
specified variant. These accessions are candidates mapping from genomic to trancript coordinates (i.e.,
g_to_c(. . .) and g_to_n(. . .)).

Note: AssemblyMapper supports only chromosomal references (e.g., NC_000006.11). It does not support
contigs or other genomic sequences (e.g., NT_167249.1).

Parameters

• hdp (object) – instance of hgvs.dataprovider subclass

• replace_reference (bool) – replace reference (entails additional network access)

• assembly_name (str) – name of assembly (“GRCh38.p5”)

42 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

HGVS, Release 1.4.0

• alt_aln_method (str) – genome-transcript alignment method (“splign”, “blat”, “ge-
newise”)

• normalize (bool) – normalize variants

• prevalidation_level (str) – None or Intrinsic or Extrinsic validation before map-
ping

• in_par_assume (str) – during x_to_g, assume this chromosome name if alignment is
ambiguous

Raises HGVSError subclasses – for a variety of mapping and data lookup failures

c_to_g(var_c)
Given a parsed c. variant, return a g. variant on the specified transcript using the specified alignment
method (default is “splign” from NCBI).

Parameters

• var_c (hgvs.sequencevariant.SequenceVariant) – a variant object

• alt_ac (str) – a reference sequence accession (e.g., NC_000001.11)

• alt_aln_method (str) – the alignment method; valid values depend on data source

Returns variant object (hgvs.sequencevariant.SequenceVariant)

Raises HGVSInvalidVariantError – if var_c is not of type “c”

c_to_n(var_c)
Given a parsed c. variant, return a n. variant on the specified transcript using the specified alignment
method (default is “transcript” indicating a self alignment).

Parameters var_c (hgvs.sequencevariant.SequenceVariant) – a variant object

Returns variant object (hgvs.sequencevariant.SequenceVariant)

Raises HGVSInvalidVariantError – if var_c is not of type “c”

c_to_p(var_c)
Converts a c. SequenceVariant to a p. SequenceVariant on the specified protein accession Author: Rudy
Rico

Parameters

• var_c (SequenceVariant) – hgvsc tag

• pro_ac (str) – protein accession

Return type hgvs.sequencevariant.SequenceVariant

g_to_c(var_g, tx_ac)
Given a parsed g. variant, return a c. variant on the specified transcript using the specified alignment
method (default is “splign” from NCBI).

Parameters

• var_g (hgvs.sequencevariant.SequenceVariant) – a variant object

• tx_ac (str) – a transcript accession (e.g., NM_012345.6 or ENST012345678)

• alt_aln_method (str) – the alignment method; valid values depend on data source

Returns variant object (hgvs.sequencevariant.SequenceVariant) using CDS co-
ordinates

Raises HGVSInvalidVariantError – if var_g is not of type “g”

1.6. Reference Manual 43

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

HGVS, Release 1.4.0

g_to_n(var_g, tx_ac)
Given a parsed g. variant, return a n. variant on the specified transcript using the specified alignment
method (default is “splign” from NCBI).

Parameters

• var_g (hgvs.sequencevariant.SequenceVariant) – a variant object

• tx_ac (str) – a transcript accession (e.g., NM_012345.6 or ENST012345678)

• alt_aln_method (str) – the alignment method; valid values depend on data source

Returns variant object (hgvs.sequencevariant.SequenceVariant) using transcript
(n.) coordinates

Raises HGVSInvalidVariantError – if var_g is not of type “g”

g_to_t(var_g, tx_ac)

n_to_c(var_n)
Given a parsed n. variant, return a c. variant on the specified transcript using the specified alignment
method (default is “transcript” indicating a self alignment).

Parameters var_n (hgvs.sequencevariant.SequenceVariant) – a variant object

Returns variant object (hgvs.sequencevariant.SequenceVariant)

Raises HGVSInvalidVariantError – if var_n is not of type “n”

n_to_g(var_n)
Given a parsed n. variant, return a g. variant on the specified transcript using the specified alignment
method (default is “splign” from NCBI).

Parameters

• var_n (hgvs.sequencevariant.SequenceVariant) – a variant object

• alt_ac (str) – a reference sequence accession (e.g., NC_000001.11)

• alt_aln_method (str) – the alignment method; valid values depend on data source

Returns variant object (hgvs.sequencevariant.SequenceVariant)

Raises HGVSInvalidVariantError – if var_n is not of type “n”

relevant_transcripts(var_g)
return list of transcripts accessions (strings) for given variant, selected by genomic overlap

t_to_g(var_t)

t_to_p(var_t)
Return a protein variant, or “non-coding” for non-coding variant types

CAUTION: Unlike other x_to_y methods that always return SequenceVariant instances, this method re-
turns a string when the variant type is n. This is intended as a convenience, particularly when looping over
relevant_transcripts, projecting with g_to_t, then desiring a protein representation for coding
transcripts.

hgvs.variantmapper

Provides VariantMapper and AssemblyMapper to project variants between sequences using AlignmentMapper.

44 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

HGVS, Release 1.4.0

class hgvs.variantmapper.VariantMapper(hdp, replace_reference=True,
prevalidation_level=’EXTRINSIC’,
add_gene_symbol=False)

Bases: object

Maps SequenceVariant objects between g., n., r., c., and p. representations.

g{c,n,r} projections are similar in that c, n, and r variants may use intronic coordinates. There are two essential
differences that distinguish the three types:

• Sequence start: In n and r variants, position 1 is the sequence start; in c variants, 1 is the transcription start
site.

• Alphabet: In n and c variants, sequences are DNA; in r. variants, sequences are RNA.

This differences are summarized in this diagram:

g ----acgtatgcac--gtctagacgt---- ----acgtatgcac--gtctagacgt---- ----
→˓acgtatgcac--gtctagacgt----

\ \/ / \ \/ / \
→˓ \/ /
c acgtATGCACGTCTAGacgt n acgtatgcacgtctagacgt r
→˓acguaugcacgucuagacgu

1 1 1
p MetHisValTer

The g excerpt and exon structures are identical. The gn transformation, which is the most basic, accounts for
the offset of the aligned sequences (shown with “1”) and the exon structure. The gc transformation is akin to
gn transformation, but requires an addition offset to account for the translation start site (c.1). The CDS in
uppercase. The gc transformation is akin to gn transformation with a change of alphabet.

Therefore, this this code uses gn as the core transformation between genomic and c, n, and r variants: All cg
and rg transformations use ng after accounting for the above differences. For example, c_to_g accounts for the
transcription start site offset, then calls n_to_g.

All methods require and return objects of type hgvs.sequencevariant.SequenceVariant.

Parameters

• replace_reference (bool) – replace reference (entails additional network access)

• prevalidation_level (str) – None or Intrinsic or Extrinsic validation before map-
ping

c_to_g(var_c, alt_ac, alt_aln_method=’splign’)
Given a parsed c. variant, return a g. variant on the specified transcript using the specified alignment
method (default is “splign” from NCBI).

Parameters

• var_c (hgvs.sequencevariant.SequenceVariant) – a variant object

• alt_ac (str) – a reference sequence accession (e.g., NC_000001.11)

• alt_aln_method (str) – the alignment method; valid values depend on data source

Returns variant object (hgvs.sequencevariant.SequenceVariant)

Raises HGVSInvalidVariantError – if var_c is not of type “c”

c_to_n(var_c)
Given a parsed c. variant, return a n. variant on the specified transcript using the specified alignment
method (default is “transcript” indicating a self alignment).

1.6. Reference Manual 45

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

HGVS, Release 1.4.0

Parameters var_c (hgvs.sequencevariant.SequenceVariant) – a variant object

Returns variant object (hgvs.sequencevariant.SequenceVariant)

Raises HGVSInvalidVariantError – if var_c is not of type “c”

c_to_p(var_c, pro_ac=None)
Converts a c. SequenceVariant to a p. SequenceVariant on the specified protein accession Author: Rudy
Rico

Parameters

• var_c (SequenceVariant) – hgvsc tag

• pro_ac (str) – protein accession

Return type hgvs.sequencevariant.SequenceVariant

g_to_c(var_g, tx_ac, alt_aln_method=’splign’)
Given a parsed g. variant, return a c. variant on the specified transcript using the specified alignment
method (default is “splign” from NCBI).

Parameters

• var_g (hgvs.sequencevariant.SequenceVariant) – a variant object

• tx_ac (str) – a transcript accession (e.g., NM_012345.6 or ENST012345678)

• alt_aln_method (str) – the alignment method; valid values depend on data source

Returns variant object (hgvs.sequencevariant.SequenceVariant) using CDS co-
ordinates

Raises HGVSInvalidVariantError – if var_g is not of type “g”

g_to_n(var_g, tx_ac, alt_aln_method=’splign’)
Given a parsed g. variant, return a n. variant on the specified transcript using the specified alignment
method (default is “splign” from NCBI).

Parameters

• var_g (hgvs.sequencevariant.SequenceVariant) – a variant object

• tx_ac (str) – a transcript accession (e.g., NM_012345.6 or ENST012345678)

• alt_aln_method (str) – the alignment method; valid values depend on data source

Returns variant object (hgvs.sequencevariant.SequenceVariant) using transcript
(n.) coordinates

Raises HGVSInvalidVariantError – if var_g is not of type “g”

g_to_t(var_g, tx_ac, alt_aln_method=’splign’)

n_to_c(var_n)
Given a parsed n. variant, return a c. variant on the specified transcript using the specified alignment
method (default is “transcript” indicating a self alignment).

Parameters var_n (hgvs.sequencevariant.SequenceVariant) – a variant object

Returns variant object (hgvs.sequencevariant.SequenceVariant)

Raises HGVSInvalidVariantError – if var_n is not of type “n”

n_to_g(var_n, alt_ac, alt_aln_method=’splign’)
Given a parsed n. variant, return a g. variant on the specified transcript using the specified alignment
method (default is “splign” from NCBI).

46 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

HGVS, Release 1.4.0

Parameters

• var_n (hgvs.sequencevariant.SequenceVariant) – a variant object

• alt_ac (str) – a reference sequence accession (e.g., NC_000001.11)

• alt_aln_method (str) – the alignment method; valid values depend on data source

Returns variant object (hgvs.sequencevariant.SequenceVariant)

Raises HGVSInvalidVariantError – if var_n is not of type “n”

t_to_g(var_t, alt_ac, alt_aln_method=’splign’)

hgvs.projector

Utility class that projects variants from one transcript to another via a common reference sequence.

class hgvs.projector.Projector(hdp, alt_ac, src_ac, dst_ac, src_alt_aln_method=’splign’,
dst_alt_aln_method=’splign’)

Bases: object

The Projector class implements liftover between two transcripts via a common reference sequence.

Parameters

• hdp – HGVS Data Provider Interface-compliant instance (see hgvs.dataproviders.
interface.Interface)

• ref – string representing the common reference assembly (e.g., GRCh37.p10)

• src_ac – string representing the source transcript accession (e.g., NM_000551.2)

• dst_ac – string representing the destination transcript accession (e.g., NM_000551.3)

• src_alt_aln_method – string representing the source transcript alignment method

• dst_alt_aln_method – string representing the destination transcript alignment method

This class assumes (and verifies) that the transcripts are on the same strand. This assumption obviates some
work in flipping sequence variants twice unnecessarily.

project_interval_backward(c_interval)
project c_interval on the destination transcript to the source transcript

Parameters c_interval – an hgvs.interval.Interval object on the destination
transcript

Returns c_interval: an hgvs.interval.Interval object on the source transcript

project_interval_forward(c_interval)
project c_interval on the source transcript to the destination transcript

Parameters c_interval – an hgvs.interval.Interval object on the source tran-
script

Returns c_interval: an hgvs.interval.Interval object on the destination transcript

project_variant_backward(c_variant)
project c_variant on the source transcript onto the destination transcript

Parameters c_variant – an hgvs.sequencevariant.SequenceVariant object on
the source transcript

Returns c_variant: an hgvs.sequencevariant.SequenceVariant object on the des-
tination transcript

1.6. Reference Manual 47

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object

HGVS, Release 1.4.0

project_variant_forward(c_variant)
project c_variant on the source transcript onto the destination transcript

Parameters c_variant – an hgvs.sequencevariant.SequenceVariant object on
the source transcript

Returns c_variant: an hgvs.sequencevariant.SequenceVariant object on the des-
tination transcript

hgvs.alignmentmapper

Mapping positions between pairs of sequence alignments

The AlignmentMapper class is at the heart of mapping between aligned sequences.

class hgvs.alignmentmapper.AlignmentMapper(hdp, tx_ac, alt_ac, alt_aln_method)
Bases: object

Provides coordinate (not variant) mapping operations between genomic (g), non-coding (n) and cds (c) coordi-
nates according to a CIGAR.

Parameters

• hdp – HGVS Data Provider Interface-compliant instance (see hgvs.dataproviders.
interface.Interface)

• tx_ac (str) – string representing transcript accession (e.g., NM_000551.2)

• alt_ac (str) – string representing the reference sequence accession (e.g.,
NC_000019.10)

• alt_aln_method (str) – string representing the alignment method; valid values depend
on data source

alt_ac

alt_aln_method

c_to_g(c_interval)
convert a transcript CDS (c.) interval to a genomic (g.) interval

c_to_n(c_interval)
convert a transcript CDS (c.) interval to a transcript cDNA (n.) interval

cds_end_i

cds_start_i

cigar

cigar_op

g_to_c(g_interval)
convert a genomic (g.) interval to a transcript CDS (c.) interval

g_to_n(g_interval)
convert a genomic (g.) interval to a transcript cDNA (n.) interval

gc_offset

is_coding_transcript

n_to_c(n_interval)
convert a transcript cDNA (n.) interval to a transcript CDS (c.) interval

48 Chapter 1. Contents

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

HGVS, Release 1.4.0

n_to_g(n_interval)
convert a transcript (n.) interval to a genomic (g.) interval

ref_pos

strand

tgt_len

tgt_pos

tx_ac

Validation and Normalization

hgvs.validator

implements validation of hgvs variants

class hgvs.validator.ExtrinsicValidator(hdp, strict=True)
Bases: object

Attempts to determine if the HGVS name validates against external data sources

validate(var, strict=None)

class hgvs.validator.IntrinsicValidator(strict=True)
Bases: object

Attempts to determine if the HGVS name is internally consistent

validate(var, strict=None)

class hgvs.validator.Validator(hdp, strict=True)
Bases: object

invoke intrinsic and extrinsic validation

validate(var, strict=None)

hgvs.normalizer

hgvs.normalizer

class hgvs.normalizer.Normalizer(hdp, cross_boundaries=False, shuffle_direction=3,
alt_aln_method=’splign’, validate=True)

Bases: object

Perform variant normalization

Initialize and configure the normalizer

Parameters

• hdp – HGVS Data Provider Interface-compliant instance (see hgvs.dataproviders.
interface.Interface)

• cross_boundaries – whether allow the shuffling to cross the exon-intron boundary

• shuffle_direction – shuffling direction

• alt_aln_method – sequence alignment method (e.g., splign, blat)

• validate – whether validating the input variant before normalizing

1.6. Reference Manual 49

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

HGVS, Release 1.4.0

normalize(var)
Perform sequence variants normalization for single variant

External Data Providers

hgvs.dataproviders.interface

Defines the abstract data provider interface

class hgvs.dataproviders.interface.Interface(mode=None, cache=None)
Bases: object

Variant mapping and validation requires access to external data, specifically exon structures, transcript align-
ments, and protein accessions. In order to isolate the hgvs package from the myriad choices and tradeoffs, these
data are provided through an implementation of the (abstract) HGVS Data Provider Interface.

As of June 2014, the only available data provider implementation uses the Universal Transcript Archive (UTA),
a sister project that provides access to transcripts and genome-transcript alignments. Invitae provides a pub-
lic UTA database instance that is used by default; see the UTA page for instructions on installing your own
PostgreSQL or SQLite version. In the future, other implementations may be availablefor other data sources.

Pure virtural class for the HGVS Data Provider Interface. Every data provider implementation should be a
subclass (possibly indirect) of this class.

Parameters

• mode (str) – cache mode (None[default lru cache], ‘learn’, ‘run’, ‘verify’)

• cache (str) – local cache file name

data_version()

get_acs_for_protein_seq(seq)

get_assembly_map(assembly_name)

get_gene_info(gene)

get_pro_ac_for_tx_ac(tx_ac)

get_seq(ac, start_i=None, end_i=None)

get_similar_transcripts(tx_ac)

get_tx_exons(tx_ac, alt_ac, alt_aln_method)

get_tx_for_gene(gene)

get_tx_for_region(alt_ac, alt_aln_method, start_i, end_i)

get_tx_identity_info(tx_ac)

get_tx_info(tx_ac, alt_ac, alt_aln_method)

get_tx_mapping_options(tx_ac)

interface_version()

required_version = None

schema_version()

50 Chapter 1. Contents

https://docs.python.org/3/library/functions.html#object
https://github.com/biocommons/uta
http://invitae.com/
https://github.com/biocommons/uta/
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

HGVS, Release 1.4.0

hgvs.dataproviders.uta

implements an hgvs data provider interface using UTA (https://github.com/biocommons/uta)

class hgvs.dataproviders.uta.ParseResult
Bases: urllib.parse.ParseResult

Subclass of url.ParseResult that adds database and schema methods, and provides stringification.

database

schema

class hgvs.dataproviders.uta.UTABase(url, mode=None, cache=None)
Bases: hgvs.dataproviders.interface.Interface

data_version()

get_acs_for_protein_seq(seq)
returns a list of protein accessions for a given sequence. The list is guaranteed to contain at least one
element with the MD5-based accession (MD5_01234abc. . . def56789) at the end of the list.

get_assembly_map(assembly_name)
return a list of accessions for the specified assembly name (e.g., GRCh38.p5)

get_gene_info(gene)
returns basic information about the gene.

Parameters gene (str) – HGNC gene name

database results hgnc | ATM maploc | 11q22-q23 descr | ataxia telangiectasia mutated sum-
mary | The protein encoded by this gene belongs to the PI3/PI4-kinase family. This. . . aliases |
AT1,ATA,ATC,ATD,ATE,ATDC,TEL1,TELO1 added | 2014-02-04 21:39:32.57125

get_pro_ac_for_tx_ac(tx_ac)
Return the (single) associated protein accession for a given transcript accession, or None if not found.

get_seq(ac, start_i=None, end_i=None)

get_similar_transcripts(tx_ac)
Return a list of transcripts that are similar to the given transcript, with relevant similarity criteria.

>> sim_tx = hdp.get_similar_transcripts(‘NM_001285829.1’) >> dict(sim_tx[0]) { ‘cds_eq’: False,
‘cds_es_fp_eq’: False, ‘es_fp_eq’: True, ‘tx_ac1’: ‘NM_001285829.1’, ‘tx_ac2’: ‘ENST00000498907’ }

where:

• cds_eq means that the CDS sequences are identical

• es_fp_eq means that the full exon structures are identical (i.e., incl. UTR)

• cds_es_fp_eq means that the cds-clipped portions of the exon structures are identical (i.e., ecluding.
UTR)

• Hint: “es” = “exon set”, “fp” = “fingerprint”, “eq” = “equal”

“exon structure” refers to the start and end coordinates on a specified reference sequence. Thus, having
the same exon structure means that the transcripts are defined on the same reference sequence and have
the same exon spans on that sequence.

get_tx_exons(tx_ac, alt_ac, alt_aln_method)
return transcript exon info for supplied accession (tx_ac, alt_ac, alt_aln_method), or None if not found

Parameters

• tx_ac (str) – transcript accession with version (e.g., ‘NM_000051.3’)

1.6. Reference Manual 51

https://github.com/biocommons/uta
https://docs.python.org/3/library/urllib.parse.html#urllib.parse.ParseResult
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

HGVS, Release 1.4.0

• alt_ac (str) – specific genomic sequence (e.g., NC_000011.4)

• alt_aln_method (str) – sequence alignment method (e.g., splign, blat)

tx_exons = db.get_tx_exons(‘NM_199425.2’, ‘NC_000020.10’, ‘splign’) # len(tx_exons) 3

tx_exons have the following attributes:

{
'tes_exon_set_id' : 98390
'aes_exon_set_id' : 298679
'tx_ac' : 'NM_199425.2'
'alt_ac' : 'NC_000020.10'
'alt_strand' : -1
'alt_aln_method' : 'splign'
'ord' : 2
'tx_exon_id' : 936834
'alt_exon_id' : 2999028
'tx_start_i' : 786
'tx_end_i' : 1196
'alt_start_i' : 25059178
'alt_end_i' : 25059588
'cigar' : '410='

}

For example:

tx_exons[0][‘tx_ac’] ‘NM_199425.2’

get_tx_for_gene(gene)
return transcript info records for supplied gene, in order of decreasing length

Parameters gene (str) – HGNC gene name

get_tx_for_region(alt_ac, alt_aln_method, start_i, end_i)
return transcripts that overlap given region

Parameters

• alt_ac (str) – reference sequence (e.g., NC_000007.13)

• alt_aln_method (str) – alignment method (e.g., splign)

• start_i (int) – 5’ bound of region

• end_i (int) – 3’ bound of region

get_tx_identity_info(tx_ac)
returns features associated with a single transcript.

Parameters tx_ac (str) – transcript accession with version (e.g., ‘NM_199425.2’)

database output -[RECORD 1]–+————- tx_ac | NM_199425.2 alt_ac | NM_199425.2
alt_aln_method | transcript cds_start_i | 283 cds_end_i | 1003 lengths | {707,79,410} hgnc | VSX1

get_tx_info(tx_ac, alt_ac, alt_aln_method)
return a single transcript info for supplied accession (tx_ac, alt_ac, alt_aln_method), or None if not found

Parameters

• tx_ac (str) – transcript accession with version (e.g., ‘NM_000051.3’)

• alt_ac (str) – specific genomic sequence (e.g., NC_000011.4)

• alt_aln_method (str) – sequence alignment method (e.g., splign, blat)

52 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

HGVS, Release 1.4.0

database output -[RECORD 1]–+———— hgnc | ATM cds_start_i | 385 cds_end_i | 9556 tx_ac |
NM_000051.3 alt_ac | AC_000143.1 alt_aln_method | splign

get_tx_mapping_options(tx_ac)
Return all transcript alignment sets for a given transcript accession (tx_ac); returns empty list if transcript
does not exist. Use this method to discovery possible mapping options supported in the database

Parameters tx_ac (str) – transcript accession with version (e.g., ‘NM_000051.3’)

database output -[RECORD 1]–+———— hgnc | ATM cds_start_i | 385 cds_end_i | 9556 tx_ac |
NM_000051.3 alt_ac | AC_000143.1 alt_aln_method | splign -[RECORD 2]–+———— hgnc | ATM
cds_start_i | 385 cds_end_i | 9556 tx_ac | NM_000051.3 alt_ac | NC_000011.9 alt_aln_method | blat

required_version = '1.1'

schema_version()

class hgvs.dataproviders.uta.UTA_postgresql(url, pooling=False, applica-
tion_name=None, mode=None,
cache=None)

Bases: hgvs.dataproviders.uta.UTABase

close()

hgvs.dataproviders.uta.connect(db_url=None, pooling=False, application_name=None,
mode=None, cache=None)

Connect to a UTA database instance and return a UTA interface instance.

Parameters

• db_url (string) – URL for database connection

• pooling (bool) – whether to use connection pooling (postgresql only)

• application_name (str) – log application name in connection (useful for debugging;
PostgreSQL only)

When called with an explicit db_url argument, that db_url is used for connecting.

When called without an explicit argument, the function default is determined by the environment variable
UTA_DB_URL if it exists, or hgvs.datainterface.uta.public_db_url otherwise.

>>> hdp = connect()
>>> hdp.schema_version()
'1.1'

The format of the db_url is driver://user:pass@host/database/schema (the same as that used by SQLAlchemy).
Examples:

A remote public postgresql database: postgresql://anonymous:anonymous@uta.biocommons.org/uta/uta_20170707’

A local postgresql database: postgresql://localhost/uta_dev/uta_20170707

For postgresql db_urls, pooling=True causes connect to use a psycopg2.pool.ThreadedConnectionPool.

1.7 Privacy Issues

This page provides details about how the hgvs package works, with a focus on privacy issues that users may have. The
intent is to provide users with enough information to assess privacy concerns for their institutions.

1.7. Privacy Issues 53

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

HGVS, Release 1.4.0

1.7.1 What’s not done

No biologically-relevant data are collected or aggregated from any use of the hgvs package for any purpose. Further-
more, variant manipulation is entirely local. Sequence variants are never sent over the network.

Someg hgvs operations require additional data. For example, mapping variants between a genomic reference and
a transcript requires transcript-specific alignment information. Currently, fetching addition data requires a network
connection.

(We are considering whether and how to provide fully self-contained installations and do not require network access,
but such is not available at this time.)

1.7.2 Data Provider Queries

hgvs requires a lot of specialized addition data to validate, normalize, and map variants. All queries for data are con-
solidated into a data provider interface that consists of 11 queries. The method signatures, including input arguments,
are shown below with a discussion about privacy consequences.

fetch_seq(ac, start_i, end_i) This method fetches reference sequence in the context of the variant and
is required in order to validate, normalize, and replace variant reference sequences. By sending
accession and coordinates, it reveals a specific region of interest (and therefore genes and possible
clinical conditions).

The current implementation, which fetches transcripts and genomic sequences from UTA, NCBI,
and Ensembl, is a measure until we complete a comprehensive sequence archive.

data_version(), schema_version() Queries for meta data about the data provider.

get_acs_for_protein_seq(seq), get_gene_info(gene), get_tx_exons(tx_ac, alt_ac, alt_aln_method), get_tx_for_gene(gene), get_tx_identity_info(tx_ac), get_tx_info(tx_ac, alt_ac, alt_aln_method), get_tx_mapping_options(tx_ac), get_tx_seq(ac)
For all of these queries, the inputs are combinations of transcript accession, reference accession,
gene name. These are likely too broad to constitute serious privacy concerns.

1.7.3 Information about current connections

The following is an example of the kinds of information available about a current connection as collected by Post-
greSQL.

datname uta
usename anonymous
applica-
tion_name

hgvs-shell/0.4.0rc2.dev20+n97ead5bf0fed.d20150831

client_addr 162.217.73.242
client_hostnameinvitae.static.monkeybrains.net
client_port 38318
back-
end_start

2015-08-31 22:58:26.411654+00

query_start 2015-08-31 22:58:30.669956+00
state_change 2015-08-31 22:58:30.673533+00
waiting f
state idle
query select * from tx_exon_aln_v where tx_ac=’NM_170707.3’ and alt_ac=’NC_000001.10’

and alt_aln_method=’splign’ order by alt_start_i

54 Chapter 1. Contents

HGVS, Release 1.4.0

Several of these merit discussion.

application_name Upon connection using the UTA data provider, a string containing the name of the
python script and hgvs version are passed to the postgresql server. The string typically looks like
hgvs-shell/0.4.0rc2.dev20+n97ead5bf0fed.d20150831. Clients may override the
application_name when calling connect().

client_addr and client_hostname The source IP and hostname are available for current connections.
For most clients, this will mean identifying an institution but not specific computers or individuals.

query The current or most recently executed query is visible. When accessed through the data provider,
this field is limited to Data Provider Queries.

1.7.4 Historical connection information

Although we do have historical logs for database connections, they provide only date, time, and database connec-
tion. Currently, we do not log queries, although we might choose to periodically log certain queries for performance
monitoring.

1.8 Contributing

hgvs is intended to be a community project. Contributions of source code, test cases, and documentation are welcome!

This section describes development conventions and practices for the hgvs project. The intention is to help developers
get up-to-speed quickly.

1.8.1 Highlights

• Development occurs in the default branch. (Release branches are named for the major-minor release, e.g., 0.4.x.)

• Versioning follows Semantic Versioning.

• The code version is determined solely by the hg tags. This version appears in the package name (e.g., hgvs-0.
4.4-py2.py3-none-any.whl) and in the version returned by hgvs.__version__. Updating to a
specific version (e.g., hg up -r 0.4.0) will get you exactly that version.

• All significant development must have an associated issue in hgvs issues; create an issue if necessary. Other
changes may have have an issue. Please develop using a bookmark or branch named for the issue, such as
44-normalization.

• Pull requests should be narrowly focused around a bug or feature. Discrete commits with good log messages
facilitate review. Consider collapsing/squashing commits with hgvs rebase --collapse ... to make
the PR concise. Submit PRs against the default branch head (or close to it).

• Abide by current code style. Use make reformat to reformat all code with yapf prior to submitting a PR.

• Email the hgvs-discuss mailing list if you have questions.

• Test your code with make test before you submit a PR.

• Currently, only Python 2.7 is supported. Support for Python 3.5 is slated for the next release (#190).

1.8. Contributing 55

http://semver.org/
https://github.com/biocommons/hgvs/issues
https://github.com/google/yapf
https://groups.google.com/forum/#!forum/hgvs-discuss
https://github.com/biocommons/hgvs/issues/190/

HGVS, Release 1.4.0

1.8.2 A Quick Contribution Example

• Fork the project at https://github.com/biocommons/hgvs/

You will be able to make changes there and then submit your contributions for inclusion into the biocommons
repo.

• Clone the project locally with

$ hg clone https://github.com/<your_username>/hgvs

• Create a virtualenv (recommended)

$ mkvirtualenv hgvs

There are other ways to make python virtual environment. How you do this isn’t important, but using a virtual
environment is good practice.

• Prepare your environment

$ make develop

The Makefile in hgvs wraps functionality in setup.py, and also provides many useful rules. See make for more
information.

• Make a branch (for significant changes)

If you expect to change multiple files, please work in a branch. Please name the branch like 141-formatter-class.

• Code, code, code!

You probably want to test code with:

$ make test

See Local UTA and make for tips on accellerating testing.

• Reformat code

This command will reformat the entire package in-place.:

$ make reformat
$ hg commit -m 'fixes #141: implements Formatter class'

Be sure to commit changes afterward!

• Commit and push:

$ make test
$ hg push

• Submit a pull request at the hgvs package web site.

1.8.3 Using a local/alternative UTA instance

• Install UTA from a PostgreSQL as described at in the UTA README.

• Specify an alternate UTA instance.

The easiest way to use a UTA instance other than the default is by setting UTA_DB_URL. The format is
postgresql://<user>:<pass>@<host>/<db>/<schema>. For example:

56 Chapter 1. Contents

https://github.com/biocommons/hgvs/
https://github.com/biocommons/hgvs
https://github.com/biocommons/uta/

HGVS, Release 1.4.0

postgresql://anonymous:anonymous@uta.biocommons.org/uta/uta_20140210

explicitly selects the public database, and

postgresql://localhost/uta/uta_20140210

selects a local instance. Developers can test connectivity like this:

$ UTA_DB_URL=postgresql://localhost/uta/uta_20140210 make test-quick

See hgvs/dataproviders/uta.py for current UTA database URLs.

1.8.4 Get Cozy with make

The hgvs package includes a GNU Makefile that aids nearly all developer tasks. It subsumes much of the functionality
in setup.py. While using the Makefile isn’t required to develop, it is the official way to invoke tools, tests, and other
development features. Type make for hgvs-specific help.

Some of the key targets are:

develop Prepare the directory for local development.

install Install hgvs (as with python setup.py install).

test Run the default test suite (~4 minutes).

test-quick Run the quick test suite (~35s) of most functionality.

clean, cleaner, cleanest Remove extraneous files, leaving a directory in various states of tidi-
ness.

docs Make the sphinx docs in docs/build/html/.

1.8.5 Code Style

The package coding style is based roughly on PEP8, with the following changes:

column_limit = 120
spaces_before_comment = 4
split_before_named_assigns = True

These code conventions are uniformly enforce by yapf. The entire code base is periodically automatically reformatted
for consistency.

Variables

The following code variable conventions are used for most of the hgvs code base. They should be considered aspi-
rations rather than reality or policy. Understanding these conventions will help uses and developers understand the
code.

Note: A note on variable suffixes If a particular variant type is expected, a suffix is often added to variable names.
e.g., var_c in a function argument list signifies that a SequenceVariant object with type=’c’ is expected.

hgvs* a string representing an HGVS variant name.

var* a hgvs.variant.SequenceVariant object

pos

1.8. Contributing 57

https://www.python.org/dev/peps/pep-0008/
https://github.com/google/yapf

HGVS, Release 1.4.0

posedit

hgvs_position

1.8.6 Release Process

hgvs uses a home-grown tool, clogger, to generate change logs. This section documents the process. (Clogger will be
released at some point, but it is currently really only executable by Reece.)

clogger’s primary goal is to propose a preliminary changelog based on commit messages between specified release
tags. That .clog file is a simple format like this:

clog format: 1; -*-outline-*-

* 0.4.1 (2015-09-14)
Changes since 0.4.0 (2015-09-09).

** Bug Fixes

*** fixes #274, #275: initialize normalizer with same alt_aln_method as
→˓AssemblyMapper [43e174d6f8af]

*** fixes #276: raise error when user attempts to map to/from c. with non-coding
→˓transcript [3f7b659f4f02]

.clog files should be edited for readability during the release process and committed to the repo (in hgvs/doc/
changelog/).

A Makefile in the same directory generates an .rst file from the .clog. This file must also be committed to the
repo. This file becomes the release changelog.

Finally, releases are bundled by major.minor versions in a file like 0.4.rst (no patch level). That file must be edited
to include the new release and committed to the repo.

Specific Example – 0.4.3 release

The 0.4.x branch has two recent changes for the 0.4.3 release. Here’s how the release was prepared:

hg up 0.4.x
hg tag 0.4.3cl

cd doc/changelog
make 0.4.3cl.clog
mv 0.4.3cl.clog 0.4.3.clog
#edit 0.4.3.clog for readability
make 0.4.3.rst
#edit 0.4.rst to add 0.4.3 to index

cd ../.. (hgvs top-level), then hg status should now look like:

M doc/changelog/0.4.rst
A doc/changelog/0.4.3.clog
A doc/changelog/0.4.3.rst

Check your work. Type make docs, then view build/sphinx/html/changelog/0.4.3.html.

Now we’re ready to finish up:

hg tag --remove 0.4.3cl
hg com -m 'added docs for 0.4.3 release'
hg tag 0.4.3

(continues on next page)

58 Chapter 1. Contents

HGVS, Release 1.4.0

(continued from previous page)

hg push
make upload # (builds distribution and uploads to pypi)

1.9 Getting Help

hgvs always works and has no bugs. Furthermore, its interface is so easy to use that a manual is unnecessary.

Just kidding.

While hgvs is well-tested and has been used by many groups for several years, bugs, unexpected behaviors, and usages
questions occur. Fortunately, there’s now a small community of people who can help.

If you need help, please read the following sources first. Then, if you’ve still got a question, post to one of them.

If you have questions about the Variation Nomenclature Recommendations, consider posting your questions to the
HGVS Facebook page.

1.9.1 hgvs-discuss Mailing List/Group

For general questions, the best source of information is the hgvs-discuss Google Group (https://groups.google.com/
forum/#!forum/hgvs-discuss). It is publicly visible, but posting requires joining in order to control spam. The mailing
list is the preferred way to reach the hgvs package authors. (Please do NOT send email directly to authors.)

1.9.2 Gitter Channel

We have a new gitter community at https://gitter.im/biocommons/hgvs. There’s not much use yet, but there’s a chance
that you could get real-time replies there.

1.9.3 Bug Reports

If you think you’ve got a bug, please report it! Here are a few tips to make it more likely that you get a useful reply:

• Use the command-line tool hgvs-shell that comes with hgvs to prepare your bug report. Using hgvs-shell makes
it easier for you to report the bug and make it easier for developers to understand it.

• Take the time to prepare a minimal example that demonstrates the bug. You are unlikely to get a reply if you
submit a report that includes your own wrappers and tooling.

• Include the bug demonstration as text. A screenshot of a bug report is not reproducible.

• Include the values of hgvs.__version__ and hgvs.hdp.url, and whether you’re using seqrepo. (i.e., whether you
specified HGVS_SEQREPO_DIR)

• hgvs-shell in an upcoming release will provide much of the above information for you, as shown below. Please
use it.

• Include an explanation of the result you expected and why.

• Report the bug using github, which requires an account. If you don’t have an account (and don’t want to create
one), sending the same information to the mailing list is acceptable.

1.9. Getting Help 59

http://varnomen.hgvs.org/
https://www.facebook.com/HGVSmutnomen
https://groups.google.com/forum/#!forum/hgvs-discuss
https://groups.google.com/forum/#!forum/hgvs-discuss
https://gitter.im/biocommons/hgvs

HGVS, Release 1.4.0

$ hgvs-shell

##
hgvs-shell -- interactive hgvs
hgvs version: 1.1.3.dev11+ne7b6a1c3ec7a
data provider url: postgresql://anonymous:anonymous@uta.biocommons.org/uta/uta_
→˓20170117
schema_version: 1.1
data_version: uta_20170117
sequences source: remote (bioutils.seqfetcher)

The following variables are defined:

* hp -- hgvs parser

* hdp -- hgvs data provider

* vm -- VariantMapper

* am37 -- AssemblyMapper, GRCh37

* am38 -- AssemblyMapper, GRCh38

* hv -- hgvs Validator

* hn -- hgvs Normalizer

hgvs_g, hgvs_c, hgvs_p -- sample variants as hgvs strings
var_g, var_c, var_p -- sample variants, as parsed SequenceVariants

When submitting bug reports, include the version header shown above
and use these variables/variable names whenever possible.

In [1]:

1.10 Frequently Asked Questions

1.10.1 Alignments for my transcript are not available. What can I do?

The short answer is: not much.

In order to project a variant between genomic and transcript coordinates, hgvs needs a sequence alignment. Sequence
alignments are obtained from the Universal Transcript Archive (UTA), a compendium of transcripts and their genome
alignments from multiple sources. Data are loaded from snapshots; the loading process is currently semi-automated
and run irregularly.

UTA loads only high-quality alignments exactly as provided by the data sources. If an alignment is not provided by
a data source, or if it fails filters recommended by NCBI, it won’t be in UTA (with a small number of exceptions).
Importantly, NCBI provides alignment data only for current transcripts against current assemblies; historical data are
not available.

So, there are two common reasons that an alignment may not exist in UTA:

• The transcript was obsoleted before UTA started in 2014, or existed only between UTA snapshots.

• The transcript does not have any high-quality alignments.

If an alignment for a particular transcript-reference sequence pair and for a particular alignment method are not avail-
able, an exception like the following will be raised:

HGVSDataNotAvailableError: No alignments for NM_000018.2 in GRCh37 using splign

Currently, there is no way for users to provide their own alignments.

60 Chapter 1. Contents

HGVS, Release 1.4.0

For example, UTA contains ten alignments for NM_000314 family of transcripts for PTEN:

transcript genome method
NM_000314.4 AC_000142.1 splign
NM_000314.4 NC_000010.10 blat
NM_000314.4 NC_000010.10 splign
NM_000314.4 NC_018921.2 splign
NM_000314.4 NG_007466.2 splign
NM_000314.5 NC_000010.10 splign
NM_000314.6 NC_000010.10 blat
NM_000314.6 NC_000010.10 splign
NM_000314.6 NC_000010.11 splign
NM_000314.6 NW_013171807.1 splign

A variant can be projected between any of the transcript, genome, and method combinations, and no other combination.

1.10.2 Why do I get different results on the UCSC browser?

The UCSC Genome Browser uses alignments generated by BLAT, which gives different results than the official align-
ments generated by NCBI using splign. Although BLAT and splign typically agree, there are many small differences
in ambiguous alignments and even some substantial differences in a small number of transcripts. In some cases, the
differences might cause a variant to be interpreted as coding using a splign alignment and non-coding by a BLAT
alignment, or vice versa. Furthermore, one typically doesn’t know which alignment set was used when publishing a
variant. (Yes, that’s a hot mess.)

1.10.3 Why do I get different results with Mutalyzer?

Some transcript-genome alignments contain indels. hgvs is careful to account for these indel discrepancies when
projecting variants. In contrast, Mutalyzer does not account for such discrepancies. Therefore, the Mutalyzer results
will be incorrect when projecting or validating a variant that is downstream of the first indel. For details and other
examples, see https://www.ncbi.nlm.nih.gov/pubmed/30129167.

1.11 Change Log

1.11.1 1.4 Series

Warning: This is the first version of hgvs that works only on Python 3.6+. It will not work on Python 2.7.
Prior versions of hgvs will not be updated. See [Migrating-to-Python-3.6](https://github.com/biocommons/org/
wiki/Migrating-to-Python-3.6).

1.4.0 (2020-01-26)

Changes since 1.3.0 (2019-05-15).

Special Attention

• Closes #552: Drop support for Python 2.7 [bc939c0] (Reece Hart)

1.11. Change Log 61

https://www.ncbi.nlm.nih.gov/pubmed/30129167
https://github.com/biocommons/org/wiki/Migrating-to-Python-3.6
https://github.com/biocommons/org/wiki/Migrating-to-Python-3.6
https://github.com/biocommons/hgvs/issues/552/
https://github.com/biocommons/hgvs/commit/bc939c0

HGVS, Release 1.4.0

• Remove Biopython dependency (#527) [3a74978] (Alan Rubin)

• Removed enum34 dependency [e93a48c] (Reece Hart)

1.11.2 1.3 Series

Warning: Python 2.7 versions of hgvs are now obsolete. The hgvs 1.3 series will not receive further updates. See
[Migrating-to-Python-3.6](https://github.com/biocommons/org/wiki/Migrating-to-Python-3.6).

1.3.0 (2019-05-12)

• pin biocommons dependencies to versions that support 2.7 and 3.5+ [25bc21f]

Changes since 1.2.5.post1 (2019-02-01).

Bug Fixes

• Fixes #474, fixes #492: correct for stop gain located at termination codon (#518)

• Fixes #501: Add c_to_p support for inversion (#502)

New Features

• Closes #243: implement hgvs-to-vcf translation

• Closes #499: recognize whole-gene dup (c.-i_*j) and assume does not affect protein sequence [dc48d5d]

• Closes #511: Update misc/experimental/vcf-add-hgvs to support newer bioutils and pyvcf [88e01d4]

• Closes #257: Support parsing gene names and optional addition during projection

• Closes #557: Add option to format translation initiation codon variants as p.Met1?

p.Met1? is the new default [2cd86b9] * Added parse shorthand for parse_hgvs_variant [69c2aeb] * Added t_to_p in
AssemblyMapper [8f9b69b] * hgvs.easy: Provide single-file import with usable defaults and functional forms for com-
mon commands (#516) * Updated hgvs-guess-plausible-transcripts [4e2a9d0] * Updated default uta to uta_20180821
[e8206d1]

Internal, Developer, and Experimental Changes

• Closes #544: Update installation docs [ae3064c]

• Closes #500: unpinned setuptools_scm [bae7e4a]

• Closes #494: Removed useless warning (Closing connection; future mapping and validation will fail) [dfa0c52]

• Added Python syntax highlighting (#550)

• Added doctests for hgvs/utils/norm.py (#548)

• Expose seqrepo reference in SeqFetcher instance [3ab49e9]

• Fix typo in docs (#554) [5b25b4f]

• When re-raising exception from sequencing fetching, including fetcher implementation and underlying excep-
tion message [42859e4]

62 Chapter 1. Contents

https://github.com/biocommons/hgvs/issues/527/
https://github.com/biocommons/hgvs/commit/3a74978
https://github.com/biocommons/hgvs/commit/e93a48c
https://github.com/biocommons/org/wiki/Migrating-to-Python-3.6
https://github.com/biocommons/hgvs/commit/25bc21f
https://github.com/biocommons/hgvs/issues/474/
https://github.com/biocommons/hgvs/issues/492/
https://github.com/biocommons/hgvs/issues/518/
https://github.com/biocommons/hgvs/issues/501/
https://github.com/biocommons/hgvs/issues/502/
https://github.com/biocommons/hgvs/issues/243/
https://github.com/biocommons/hgvs/issues/499/
https://github.com/biocommons/hgvs/commit/dc48d5d
https://github.com/biocommons/hgvs/issues/511/
https://github.com/biocommons/hgvs/commit/88e01d4
https://github.com/biocommons/hgvs/issues/257/
https://github.com/biocommons/hgvs/issues/557/
https://github.com/biocommons/hgvs/commit/69c2aeb
https://github.com/biocommons/hgvs/commit/8f9b69b
https://github.com/biocommons/hgvs/issues/516/
https://github.com/biocommons/hgvs/commit/4e2a9d0
https://github.com/biocommons/hgvs/commit/e8206d1
https://github.com/biocommons/hgvs/issues/544/
https://github.com/biocommons/hgvs/commit/ae3064c
https://github.com/biocommons/hgvs/issues/500/
https://github.com/biocommons/hgvs/commit/bae7e4a
https://github.com/biocommons/hgvs/issues/494/
https://github.com/biocommons/hgvs/commit/dfa0c52
https://github.com/biocommons/hgvs/issues/550/
https://github.com/biocommons/hgvs/issues/548/
https://github.com/biocommons/hgvs/commit/3ab49e9
https://github.com/biocommons/hgvs/issues/554/
https://github.com/biocommons/hgvs/commit/5b25b4f
https://github.com/biocommons/hgvs/commit/42859e4

HGVS, Release 1.4.0

• add 3.7 support to Makefile [3a89a82]

• added link to hgvs notebooks on mybinder.org [3077d3c]

• added notebook of hdp output examples [4fb9617]

• don’t warn about pickle.load() [f052d03]

• emit CRITICAL log message on Python < 3.6 [b7f320a]

• expose seqrepo reference in SeqFetcher instance [3ab49e9]

• fix regexp that didn’t use a raw (r”“) string (DeepSource) [f6126f6]

• fix: expected results in quick_start.rst doctest were unsorted [63d5e74]

• fixed incompatibilities with newer version of pytest [ee9426f]

• fixed redundant exception imports (DeepSource) [dc6277d]

• minor code cleanup based on pylint testing [927864d]

• ooops. . . used f string in 2.7 version :-([5c3492a]

• remove del sequence from variants being tested (and remove re module DeprecationWarnings); and fix latent
bugs in tests [2cb053d]

• remove relative path in pkg_resources.resource_filename() to eliminate warning about future failure [19a16d5]

• updated pytest mark configuration [d922495]

1.11.3 1.2 Series

Warning: Python 2.7 versions of hgvs are now deprecated and will become unsupported on April 1, 2019. See
[Migrating-to-Python-3.6](https://github.com/biocommons/org/wiki/Migrating-to-Python-3.6).

1.2.5 (2019-02-01)

Changes since 1.2.4 (2018-09-28).

Special Attention

Python 2.7 versions of hgvs are now deprecated and will become unsupported on April 1, 2019. See Migrating-to-
Python-3.6.

Bug Fixes

• Fixes #546: relevant transcripts should be wholly within transcript bounds [86412924353b]

Internal and Developer Changes

• fix testing bug that caused py3.5 env to be undefined on travis [5146b07]

1.11. Change Log 63

https://github.com/biocommons/hgvs/commit/3a89a82
https://github.com/biocommons/hgvs/commit/3077d3c
https://github.com/biocommons/hgvs/commit/4fb9617
https://github.com/biocommons/hgvs/commit/f052d03
https://github.com/biocommons/hgvs/commit/b7f320a
https://github.com/biocommons/hgvs/commit/3ab49e9
https://github.com/biocommons/hgvs/commit/f6126f6
https://github.com/biocommons/hgvs/commit/63d5e74
https://github.com/biocommons/hgvs/commit/ee9426f
https://github.com/biocommons/hgvs/commit/dc6277d
https://github.com/biocommons/hgvs/commit/927864d
https://github.com/biocommons/hgvs/commit/5c3492a
https://github.com/biocommons/hgvs/commit/2cb053d
https://github.com/biocommons/hgvs/commit/19a16d5
https://github.com/biocommons/hgvs/commit/d922495
https://github.com/biocommons/org/wiki/Migrating-to-Python-3.6
https://github.com/biocommons/org/wiki/Migrating-to-Python-3.6
https://github.com/biocommons/org/wiki/Migrating-to-Python-3.6
https://github.com/biocommons/hgvs/issues/546/
https://github.com/biocommons/hgvs/commit/86412924353b
https://github.com/biocommons/hgvs/commit/5146b07

HGVS, Release 1.4.0

1.2.4 (2018-09-28)

Changes since 1.2.3 (2018-09-04).

Bug Fixes

• Closes #525: fix c_to_p bug with insertion of in-phase Ter (credit: @ianfab) [d40a71a6548b]

• backported test for #525 to 1.2 branch [cb769e9591d5]

Other Changes

• added missing changelog files for 1.2.3 [5d2cf1c]

1.2.3 (2018-09-05)

Changes since 1.2.2 (2018-08-09).

Bug Fixes

• Fixes #474, fixes #492: correct for stop gain located at termination codon

1.2.2 (2018-07-23)

Changes since 1.2.1 (2018-07-21).

Bug Fixes

• Closes #501: Add c_to_p support for inversion (#502)

1.2.1 (2018-07-21)

Changes since 1.2.0 (2018-07-15).

Bug Fixes

• Fixes #499: recognize whole-gene dup (c.-i_*j) and assume does not affect protein sequence [dc48d5d]

1.2.0 (2018-07-14)

Changes since 1.1.3 (2018-07-01).

64 Chapter 1. Contents

https://github.com/biocommons/hgvs/issues/525/
https://github.com/biocommons/hgvs/commit/d40a71a6548b
https://github.com/biocommons/hgvs/issues/525/
https://github.com/biocommons/hgvs/commit/cb769e9591d5
https://github.com/biocommons/hgvs/commit/5d2cf1c
https://github.com/biocommons/hgvs/issues/474/
https://github.com/biocommons/hgvs/issues/492/
https://github.com/biocommons/hgvs/issues/501/
https://github.com/biocommons/hgvs/issues/502/
https://github.com/biocommons/hgvs/issues/499/
https://github.com/biocommons/hgvs/commit/dc48d5d

HGVS, Release 1.4.0

Special Attention

This release contains a significant improvement in the accuracy of projecting variants in the vicinity of genome-
transcript alignment gaps. Previously, hgvs handled only a limited number of cases. The new AlignmentMapper now
handles all cases identified for projecting substitution, insertion, and deletion variants in the context of substituion,
insertion, and deletion alignment discrepancies. [Credit: Meng Wang]

Deprecations and Removals

AlignmentMapper replaces IntervalMapper and TranscriptMapper. The latter are now deprecated and will be removed
in the next release.

Bug Fixes

• Fixes #497: Honor normalize switch in AssemblyMapper [61d363e]

New Features

• Closes #208: Rewrite coordination mapping to provide better support for projecting variants in the vicinity of
transcript-alignment gaps.

1.11.4 1.1 Series

1.1.3 (2018-07-01)

Changes since 1.1.2 (2018-03-31).

Bug Fixes

• Fixes #490: raises a NotImplementedError when a coding sequence is not divisible by 3 (#491) [35d72a577df5]

Other Changes

• added protein translation to README (how did we not have c_to_p there?!) [e7b6a1c3ec7a]

• switch to psycopg2-binary [9c1ec59a93ec]

Internal and Developer Changes

• added misc/proj-at-disc/ [1bdf4c40c750]

• added jupyter to etc/develop.reqs [9bdef16c24a2]

• update venv rules in Makefile [296feb69b7c5]

• update pypi link to new pypi.org site [76beb3424615]

1.11. Change Log 65

https://github.com/biocommons/hgvs/issues/497/
https://github.com/biocommons/hgvs/commit/61d363e
https://github.com/biocommons/hgvs/issues/208/
https://github.com/biocommons/hgvs/issues/490/
https://github.com/biocommons/hgvs/issues/491/
https://github.com/biocommons/hgvs/commit/35d72a577df5
https://github.com/biocommons/hgvs/commit/e7b6a1c3ec7a
https://github.com/biocommons/hgvs/commit/9c1ec59a93ec
https://github.com/biocommons/hgvs/commit/1bdf4c40c750
https://github.com/biocommons/hgvs/commit/9bdef16c24a2
https://github.com/biocommons/hgvs/commit/296feb69b7c5
https://github.com/biocommons/hgvs/commit/76beb3424615

HGVS, Release 1.4.0

1.1.2 (2018-03-31)

Changes since 1.1.1 (2017-11-24).

Bug Fixes

• Fix #483: fix bug when normalizing at first and last base (#484)

• Fix #480: fix validation of AAPosition (#485)

• Fix #431: fix length_change for ident var (#486) [5e59104cc739]

• Fix #476: fix c_to_p for dup at the end of cds (#478)

• Fix #488: unpin attrs package version by refactoring reftranscriptdata and altseqbuilder to not use closures or
attrs [0e1d9f137642]

Internal and Developer Changes

• drop py3.5 from tox testing (Python 3.5 devel not available on Ubuntu 17.10) [3d311f8d2b26]

• omit coverage for utility and external source files [23b8b55eee87]

• pin setuptools_scm to 1.11.1, the last version known to work with hgvs [51ad9ad4b07a]

1.1.1 (2017-11-24)

Changes since 1.1.0.post1 (2017-07-11).

Bug Fixes

• Fixes #453: Fix get_tgt_length for m. var in normalizer [f7ec2a7a5037]

• Fixes #459: fix bug when raising exception on fetch_seq failure [650a97c715dc]

• Fixes #466: Wrong mapping result of identity variant without ref given (#468)

• Fixes #464: Make start and end position independent when start and end are equal [682f730bcfdb]

Other Changes

• Fixes #473: Pin attrs <17.3.0 due to ‘ValueError: Cell is empty’ [0ac8cffd262d]

Internal and Developer Changes

• tox now tests 2.7, 3.5 and 3.6

• catch KeyError from SeqFetcher (API change in seqfetcher) [da25364c6607]

• Invitae Only: Adds a new ncbi dataprovider that has been modeled on the uta dataprovider. (#472)
[63b9c4a334eb]

66 Chapter 1. Contents

https://github.com/biocommons/hgvs/issues/483/
https://github.com/biocommons/hgvs/issues/484/
https://github.com/biocommons/hgvs/issues/480/
https://github.com/biocommons/hgvs/issues/485/
https://github.com/biocommons/hgvs/issues/431/
https://github.com/biocommons/hgvs/issues/486/
https://github.com/biocommons/hgvs/commit/5e59104cc739
https://github.com/biocommons/hgvs/issues/476/
https://github.com/biocommons/hgvs/issues/478/
https://github.com/biocommons/hgvs/issues/488/
https://github.com/biocommons/hgvs/commit/0e1d9f137642
https://github.com/biocommons/hgvs/commit/3d311f8d2b26
https://github.com/biocommons/hgvs/commit/23b8b55eee87
https://github.com/biocommons/hgvs/commit/51ad9ad4b07a
https://github.com/biocommons/hgvs/issues/453/
https://github.com/biocommons/hgvs/commit/f7ec2a7a5037
https://github.com/biocommons/hgvs/issues/459/
https://github.com/biocommons/hgvs/commit/650a97c715dc
https://github.com/biocommons/hgvs/issues/466/
https://github.com/biocommons/hgvs/issues/468/
https://github.com/biocommons/hgvs/issues/464/
https://github.com/biocommons/hgvs/commit/682f730bcfdb
https://github.com/biocommons/hgvs/issues/473/
https://github.com/biocommons/hgvs/commit/0ac8cffd262d
https://github.com/biocommons/hgvs/commit/da25364c6607
https://github.com/biocommons/hgvs/issues/472/
https://github.com/biocommons/hgvs/commit/63b9c4a334eb

HGVS, Release 1.4.0

1.1.0 (2017-07-11)

Changes since 1.0.0.post3 (2017-04-11).

Special Attention

This is the first version of hgvs that supports Python 3 (yay!). Continuous integration tests are now performed against
Python 2.7, 3.5, and 3.6. Please report any issues.

Bug Fixes

• Closed #445: Fix normalization erros at start and end of transcript [56ed82a62f57]

• Closed #444: Fix normalizing var near the end of transcript

New Features

• Closed #424, #430: make no-change sequence optional for parsing, and do not include sequence by default on
formatting [25fcf7a96158]

• Closed #427: Ensure c. coordinate within CDS bound

• Closed #439: Add method to explicitly close database connections [9f796476ba22]

• Handle the cds_{start,end} is None case explicitly, since None is not comparable to ints in python 3+.
[13de480978de]

• Merged Python 3 support [deb08ea1f6fa]. Big thanks to Lucas Wiman and Counsyl for contributing Python 3
support!

Other Changes

• explicitly set and test _conn in UTA_postgresql.__init__. [faf5f37b77cd] Avoids sporadic errors during runtime
shutdown in Python 3 (presumably due to non-deterministic object destruction order)

Internal and Developer Changes

• Added AssemblyMapper._fetch_TranscriptMapper() convenience method [cd2f21f2f8b3]

• Closed #343: Migrate from nose to pytest+tox [@lucaswiman] [b2263aed8ca0]. hgvs is now tested with tox in
Python 2.7 and 3.5 environments.

• Reactivate CI testing with travis (previously drone.io) [ef23089c2c06]. master is currently testing on all commits
https://travis-ci.org/biocommons/hgvs.png?branch=master

1.11.5 1.0 Series

1.0.0 (2017-04-08)

Changes since 0.4.0 (2015-09-09).

1.11. Change Log 67

https://github.com/biocommons/hgvs/issues/445/
https://github.com/biocommons/hgvs/commit/56ed82a62f57
https://github.com/biocommons/hgvs/issues/444/
https://github.com/biocommons/hgvs/issues/424/
https://github.com/biocommons/hgvs/issues/430/
https://github.com/biocommons/hgvs/commit/25fcf7a96158
https://github.com/biocommons/hgvs/issues/427/
https://github.com/biocommons/hgvs/issues/439/
https://github.com/biocommons/hgvs/commit/9f796476ba22
https://github.com/biocommons/hgvs/commit/13de480978de
https://github.com/biocommons/hgvs/commit/deb08ea1f6fa
https://github.com/biocommons/hgvs/commit/faf5f37b77cd
https://github.com/biocommons/hgvs/commit/cd2f21f2f8b3
https://github.com/biocommons/hgvs/issues/343/
https://github.com/biocommons/hgvs/commit/b2263aed8ca0
https://github.com/biocommons/hgvs/commit/ef23089c2c06
https://travis-ci.org/biocommons/hgvs.png?branch=master

HGVS, Release 1.4.0

This is a major release of the hgvs package that includes new features and behavior changes. Some client code may
require minor modification. (Note: Previously, we had tentatively called this release 0.5.0. The magnitude of the
changes and the desire to migrate to public API versioning led us release as 1.0.0.)

See Installing hgvs for installation instructions.

Major Features and Changes

This section highlights import behavior or interface changes relative to the 0.4.x series. Code modifications are likely
for most of the features listed below.

EasyVariantMapper renamed to AssemblyMapper, now with GRCh38 and PAR support. EasyVariantMapper
was renamed to AssemblyMapper to better reflect its role. AssemblyMapper defaults to GRCh38. Transcripts in
pseudoautosomal regions have alignments to X and Y. Previously, EVM would refuse to guess which alignment to use
and raise an exception. AssemblyMapper has a new argument, in_par_assume, which enables callers to prefer X or Y
alignments.

VariantMapper validates variants before mapping. Several bug reports resulted from attempting to project invalid
variants, such as as variants with insertions between non-adjacent nucleotides. These generated exceptions or unex-
pected results. Intrinsic validation is now peformed before mapping and normalization, and callers may wish to catch
these.

Fully local installations – no network access required. hgvs requires access to transcripts and sequences for most
operations. By default, hgvs will use public remote resources at runtime, which incurs significant latency and, in
principle, presents a minor privacy concern. While UTA has always been available for local installation, the more
significant delay was in sequence lookup. A new package, SeqRepo, provides a local sequence database that is
synchronized with UTA. When used together, these packages completely obviate network connectivity and improve
speed by approximately 50x.

hgvs transitions to public API versioning conventions. By transitioning from major version 0 (“initial develop-
ment”) to 1 (“public API”), we are indicating that the API is expected to be stable. In practice, this change will
mean that x.y.z versions will clearly distinguish bug fix releases (increment z), backward-compatible feature additions
(increment y), and API incompatible changes (increment x). See Semantic Versioning for more information.

Changes in p. formatting to better conform to current varnomen recommendations. Inferred changes with
unknown p. effects are now represented with p.? rather than p.(?) (#393). In addition, silent SNV mutations now
include the amino acid, as in NP_000050.2:p.Lys2597= rather than NP_000050.2:p.(=) (#317). Both changes improve
conformance with current varnome recommendations.

By default, do not show reference sequence in dels and dups. For example, NM_000059.3:c.22_23delAAinsT
would be shown as NM_000059.3:c.22_23delinsT. Users may configure max_ref_length (default 0) order to change
this behavior (#404).

BaseOffsetPosition datums now use enums, defined in hgvs.enums. For example, previous
hgvs.location.SEQ_START must be replaced with hgvs.enums.Datum.SEQ_START (#396).

Unknown protein effect are now internally represented with ‘var.posedit=None‘. This case is printed as
NP_01234.5:p.? (#412).

Deprecations and Removals

• #349: drop support for dupN [0dbe440]

• #360: HGVSValidationError removed; used HGVSInvalidVariantError instead.

68 Chapter 1. Contents

https://github.com/biocommons/seqrepo/
http://semver.org/
https://github.com/biocommons/hgvs/issues/393/
https://github.com/biocommons/hgvs/issues/317/
http://varnomen.org/
https://github.com/biocommons/hgvs/issues/404/
https://github.com/biocommons/hgvs/issues/396/
https://github.com/biocommons/hgvs/issues/412/
https://github.com/biocommons/hgvs/issues/349/
https://github.com/biocommons/hgvs/commit/0dbe440
https://github.com/biocommons/hgvs/issues/360/

HGVS, Release 1.4.0

Bug Fixes

• #284: validation fails for g variants [512b882]

• #292: Fix bug in validator when validating m. variants and add tests [12d9b48]

• #308: validation across CDS start and CDS end boundaries [ac066ee], [8c8db03]

• #346: ensure that alignment starts at transcript position 0 [3af24b3], [9f29c87]

• #381: fix bug attempting to normalize p. variants; add issue test (test_issues.py) [834bed9]

• #393: fix inconsistent representation of unknown p. effect when inferred by c_to_p [3f1ac48]

• #409: Fix bug in normalizer when normalizing ident variant that is written as delins [94607ecc30da]

• #415: Limit assembly mapper to NC accessions [6056fd4414df]

New Features

• #105: configurable formatting [c8b9fd1]

• #249: Move intrinsic validation to models

• #253: Add p. validation support [3d3b9da], [ba943ae]

• #256: rename EasyVariantMapper to AssemblyMapper to better indicate functionality [d6697d6]

• #258, #330, #342: ensure that start and end datums are compatible [247d8bf]

• #260, #322: added tests to verify that exceptions are raised when mapping invalid variants [ac37ae0]

• #270: add is_intronic method to BaseOffsetPosition [4e40866]

• #282: preserve position in “identity” variants (e.g., norm(c.123A>A) => c.123= rather than c.=) [cc523ed]

• #295: raise exception when validating deletion length for intronic variants [4575ed8]

• #309: make errors more informative when coordinate is outside sequence bounds [d667d8b], [f4cd048]

• #314: support parsing identity variants [9116c72]

• #315: Validate accession type pairs [be90d50]

• #316: provide generalized transcript-to-genome projects to handle coding and non-coding transcripts transpar-
ently [26006c7]

• #317: Output silent p. variants according to HGVS recommendations [4babbb5]

• #319: added PosEdit.length_change() method [c191567], [c71a48b], [c70fded]

• #326: provide special handling for disambiguating alignments in pseudoautosomal regions [acc560e]

• #330: datum-matching [e05674b], [461ccd7]

• #336: add hgvs-shell as excutable for exploration, debugging, bug submission [f6b6c3c]

• #356: add position comparision operators [4f7f7e4]

• #365: graded validation

• #366: move validation to variantmapper

• #372: rename hgvs/variant.py to hgvs/sequencevariant.py [2f69d65], [ad604fd]

• #379: move replace_reference to variantmapper (from evm) [c0f4be1]

• #386: reject discontiguous alignments [ea2527c]

1.11. Change Log 69

https://github.com/biocommons/hgvs/issues/284/
https://github.com/biocommons/hgvs/commit/512b882
https://github.com/biocommons/hgvs/issues/292/
https://github.com/biocommons/hgvs/commit/12d9b48
https://github.com/biocommons/hgvs/issues/308/
https://github.com/biocommons/hgvs/commit/ac066ee
https://github.com/biocommons/hgvs/commit/8c8db03
https://github.com/biocommons/hgvs/issues/346/
https://github.com/biocommons/hgvs/commit/3af24b3
https://github.com/biocommons/hgvs/commit/9f29c87
https://github.com/biocommons/hgvs/issues/381/
https://github.com/biocommons/hgvs/commit/834bed9
https://github.com/biocommons/hgvs/issues/393/
https://github.com/biocommons/hgvs/commit/3f1ac48
https://github.com/biocommons/hgvs/issues/409/
https://github.com/biocommons/hgvs/commit/94607ecc30da
https://github.com/biocommons/hgvs/issues/415/
https://github.com/biocommons/hgvs/commit/6056fd4414df
https://github.com/biocommons/hgvs/issues/105/
https://github.com/biocommons/hgvs/commit/c8b9fd1
https://github.com/biocommons/hgvs/issues/249/
https://github.com/biocommons/hgvs/issues/253/
https://github.com/biocommons/hgvs/commit/3d3b9da
https://github.com/biocommons/hgvs/commit/ba943ae
https://github.com/biocommons/hgvs/issues/256/
https://github.com/biocommons/hgvs/commit/d6697d6
https://github.com/biocommons/hgvs/issues/258/
https://github.com/biocommons/hgvs/issues/330/
https://github.com/biocommons/hgvs/issues/342/
https://github.com/biocommons/hgvs/commit/247d8bf
https://github.com/biocommons/hgvs/issues/260/
https://github.com/biocommons/hgvs/issues/322/
https://github.com/biocommons/hgvs/commit/ac37ae0
https://github.com/biocommons/hgvs/issues/270/
https://github.com/biocommons/hgvs/commit/4e40866
https://github.com/biocommons/hgvs/issues/282/
https://github.com/biocommons/hgvs/commit/cc523ed
https://github.com/biocommons/hgvs/issues/295/
https://github.com/biocommons/hgvs/commit/4575ed8
https://github.com/biocommons/hgvs/issues/309/
https://github.com/biocommons/hgvs/commit/d667d8b
https://github.com/biocommons/hgvs/commit/f4cd048
https://github.com/biocommons/hgvs/issues/314/
https://github.com/biocommons/hgvs/commit/9116c72
https://github.com/biocommons/hgvs/issues/315/
https://github.com/biocommons/hgvs/commit/be90d50
https://github.com/biocommons/hgvs/issues/316/
https://github.com/biocommons/hgvs/commit/26006c7
https://github.com/biocommons/hgvs/issues/317/
https://github.com/biocommons/hgvs/commit/4babbb5
https://github.com/biocommons/hgvs/issues/319/
https://github.com/biocommons/hgvs/commit/c191567
https://github.com/biocommons/hgvs/commit/c71a48b
https://github.com/biocommons/hgvs/commit/c70fded
https://github.com/biocommons/hgvs/issues/326/
https://github.com/biocommons/hgvs/commit/acc560e
https://github.com/biocommons/hgvs/issues/330/
https://github.com/biocommons/hgvs/commit/e05674b
https://github.com/biocommons/hgvs/commit/461ccd7
https://github.com/biocommons/hgvs/issues/336/
https://github.com/biocommons/hgvs/commit/f6b6c3c
https://github.com/biocommons/hgvs/issues/356/
https://github.com/biocommons/hgvs/commit/4f7f7e4
https://github.com/biocommons/hgvs/issues/365/
https://github.com/biocommons/hgvs/issues/366/
https://github.com/biocommons/hgvs/issues/372/
https://github.com/biocommons/hgvs/commit/2f69d65
https://github.com/biocommons/hgvs/commit/ad604fd
https://github.com/biocommons/hgvs/issues/379/
https://github.com/biocommons/hgvs/commit/c0f4be1
https://github.com/biocommons/hgvs/issues/386/
https://github.com/biocommons/hgvs/commit/ea2527c

HGVS, Release 1.4.0

• #391: Attempt reconnection if db connection is lost [2aef5fac3a61]

• #399: validators should raise only HGVSInvalidVariantError exceptions

• #404: Implement max_ref_length in formatter and don’t show reference sequence by default

Other Changes

• #276: raise error when user attempts to map to/from c. with non-coding transcript [aaa0ff5]

• #363: update railroad diagram [3e23e10]

Internal and Developer Changes

• #236: migrate from built-in seqfetcher to bioutils seqfetcher [5e9a951]

• #237: Mock testing data; dropped unmaintained sqlite-based tests

• #287: ensure that modules are also getting doctested (continues #287) [3cbe93a]

• #347: Replace recordtype with attrs

• #395: get ThreadedConnectionPool sizes from config [a2a216c]

• #397: use hgvs.config for VariantMapper.__init__() [154cf5e]

• #400: make hdp cache mode (for testing) settable via HGVS_CACHE_MODE environment variable [09303c7]

• removed sqlite-based uta dataprovider; updated reqs in etc [e8c9d8d85d35]

1.11.6 0.4 Series

0.4.14 (2017-05-19)

Changes since 0.4.13 (2016-12-12).

New Features

• Closed #439: Add method to explicitly close database connections [BROKEN: 5a876fd2d1ec]

0.4.13 (2016-12-12)

Changes since 0.4.12 (2016-12-06).

Bug Fixes

• closes #390: fix missing HGVSError import in variantmapper [BROKEN: 9e3bee72a349]

0.4.12 (2016-12-06)

Changes since 0.4.11 (2016-09-15).

70 Chapter 1. Contents

https://github.com/biocommons/hgvs/issues/391/
https://github.com/biocommons/hgvs/commit/2aef5fac3a61
https://github.com/biocommons/hgvs/issues/399/
https://github.com/biocommons/hgvs/issues/404/
https://github.com/biocommons/hgvs/issues/276/
https://github.com/biocommons/hgvs/commit/aaa0ff5
https://github.com/biocommons/hgvs/issues/363/
https://github.com/biocommons/hgvs/commit/3e23e10
https://github.com/biocommons/hgvs/issues/236/
https://github.com/biocommons/hgvs/commit/5e9a951
https://github.com/biocommons/hgvs/issues/237/
https://github.com/biocommons/hgvs/issues/287/
https://github.com/biocommons/hgvs/issues/287/
https://github.com/biocommons/hgvs/commit/3cbe93a
https://github.com/biocommons/hgvs/issues/347/
https://github.com/biocommons/hgvs/issues/395/
https://github.com/biocommons/hgvs/commit/a2a216c
https://github.com/biocommons/hgvs/issues/397/
https://github.com/biocommons/hgvs/commit/154cf5e
https://github.com/biocommons/hgvs/issues/400/
https://github.com/biocommons/hgvs/commit/09303c7
https://github.com/biocommons/hgvs/commit/e8c9d8d85d35
https://github.com/biocommons/hgvs/issues/439/
https://github.com/biocommons/hgvs/commit/5a876fd2d1ec
https://github.com/biocommons/hgvs/issues/390/
https://github.com/biocommons/hgvs/commit/9e3bee72a349

HGVS, Release 1.4.0

Bug Fixes

• #386: reject discontiguous alignments [BROKEN: 839a6fc36c7d]

Other Changes

• Minor typo corrections on quick_start.rst [BROKEN: 49bb4ac246f1] (PR #53 from kmcallenberg)

0.4.11 (2016-09-15)

Changes since 0.4.10 (2016-09-13).

Other Changes

• fixed #357: reenable parsing of sequence with inversion (backed out #340) [BROKEN: 881c58dda474]

0.4.10 (2016-08-16)

Changes since 0.4.9 (2016-08-01).

Bug Fixes

• fixes #336: add hgvs-shell as excutable for exploration, debugging, bug submission [BROKEN: 8ae7f072abc1]

• fixes #346: pushed alignment validation into dataprovider get_tx_exons() to cover use in normalizer [BROKEN:
0bc61059562c]

Other Changes

• closes #352: use https for seqfetcher [BROKEN: ed0655b1bb2b]

0.4.9 (2016-08-01)

Changes since 0.4.8 (2016-07-19).

Special Attention

A small number of alignments provided by NCBI do not begin at the transcript start. These exist in UTA as-is and
lead to incorrect mapping and validation. Issue #346 contains the list of 52 transcripts in 37 genes which exhibit this
issue; please review prior results. hgvs will now refuse to use such alignments.

1.11. Change Log 71

https://github.com/biocommons/hgvs/issues/386/
https://github.com/biocommons/hgvs/commit/839a6fc36c7d
https://github.com/biocommons/hgvs/commit/49bb4ac246f1
https://github.com/biocommons/hgvs/issues/53/
https://github.com/biocommons/hgvs/issues/357/
https://github.com/biocommons/hgvs/issues/340/
https://github.com/biocommons/hgvs/commit/881c58dda474
https://github.com/biocommons/hgvs/issues/336/
https://github.com/biocommons/hgvs/commit/8ae7f072abc1
https://github.com/biocommons/hgvs/issues/346/
https://github.com/biocommons/hgvs/commit/0bc61059562c
https://github.com/biocommons/hgvs/commit/0bc61059562c
https://github.com/biocommons/hgvs/issues/352/
https://github.com/biocommons/hgvs/commit/ed0655b1bb2b
https://github.com/biocommons/hgvs/issues/346/

HGVS, Release 1.4.0

Bug Fixes

• #346 (partial fix): ensure that alignment starts at transcript position 0 [BROKEN: ab402bf020c6]

• fixes #338: check position range limit when normalizing [BROKEN: da5f1fbcf76d]

• fixes #285, #334, #335, #324, #340: inversions parsing, formatting, and normalization [BROKEN:
29a7b8634b01]

• fixes #340: do not accept sequence following inv [BROKEN: f76e1cb83422]

0.4.8 (2016-07-19)

Changes since 0.4.7 (2016-06-27).

Bug Fixes

• fixes #337: soft-pin bioutils >=0.1.0,<0.2.0 [BROKEN: 13620e943e0c]

0.4.7 (2016-01-23)

Changes since 0.4.6 (2016-06-27).

Bug Fixes

• fixes #310: Fix wrong start position when normalizing some variants [BROKEN: 734c08f18ea1]. Thanks to
Meng Wang.

0.4.6 (2016-06-27)

Changes since 0.4.5 (2016-04-01).

Bug Fixes

• fixes #308: fix issues with validating across CDS start and CDS end boundaries [BROKEN: ce6995941984]

Other Changes

• closes #309: make errors more informative when coordinate is outside sequence bounds [BROKEN:
e6e0decdad8e]

• closes #295: raise error when attempting to validate del length in intronic variants [BROKEN: 13674d3c6d14]

Internal and Developer Changes

• fix issues with release docs for 0.4.x layout [BROKEN: 52b2358fed02]

72 Chapter 1. Contents

https://github.com/biocommons/hgvs/issues/346/
https://github.com/biocommons/hgvs/commit/ab402bf020c6
https://github.com/biocommons/hgvs/issues/338/
https://github.com/biocommons/hgvs/commit/da5f1fbcf76d
https://github.com/biocommons/hgvs/issues/285/
https://github.com/biocommons/hgvs/issues/334/
https://github.com/biocommons/hgvs/issues/335/
https://github.com/biocommons/hgvs/issues/324/
https://github.com/biocommons/hgvs/issues/340/
https://github.com/biocommons/hgvs/commit/29a7b8634b01
https://github.com/biocommons/hgvs/commit/29a7b8634b01
https://github.com/biocommons/hgvs/issues/340/
https://github.com/biocommons/hgvs/commit/f76e1cb83422
https://github.com/biocommons/hgvs/issues/337/
https://github.com/biocommons/hgvs/commit/13620e943e0c
https://github.com/biocommons/hgvs/issues/310/
https://github.com/biocommons/hgvs/commit/734c08f18ea1
https://github.com/biocommons/hgvs/issues/308/
https://github.com/biocommons/hgvs/commit/ce6995941984
https://github.com/biocommons/hgvs/issues/309/
https://github.com/biocommons/hgvs/commit/e6e0decdad8e
https://github.com/biocommons/hgvs/commit/e6e0decdad8e
https://github.com/biocommons/hgvs/issues/295/
https://github.com/biocommons/hgvs/commit/13674d3c6d14
https://github.com/biocommons/hgvs/commit/52b2358fed02

HGVS, Release 1.4.0

0.4.5 (2016-03-31)

Changes since 0.4.4 (2015-12-15).

Special Attention

• The _execute() method of the UTA data provider was removed.

As part of addressing bug #321, this internal method was removed. Deprecation notices will not be issued for inter-
nal methods. (By Pyhon convention, tokens beginning with an underscore are considered private to the package or
module.)

Bug Fixes

• fixes #321: use context manager to obtain and release cursors [BROKEN: 70c13e5a0643]

New Features

• closes #319: added PosEdit.length_change() method [BROKEN: fa5bb5fb9a50]

Other Changes

• closes #299: migrate 0.4.x branch docs to rtd theme [BROKEN: 3e016264457d]

0.4.4 (2015-12-15)

Changes since 0.4.3 (2015-12-06).

Bug Fixes

• fixes #282: preserve position in “identity” variants (e.g., norm(c.123A>A) => c.123= rather than c.=) [BRO-
KEN: 5e6fd1524204]. (Reported by Stephan Pabinger.)

• fixes #294: extend variant type checks in validator [BROKEN: e28b5a525f6e]

• fixes #292: Fix bug in validator when validating m. variants and add tests [BROKEN: 64e31808a760]

Other Changes

• stopgap for #253: issue warning that p. validation is unsupported [BROKEN: a9bd9ab405bc] (Reported by
Ram Srinivasan.)

0.4.3 (2015-12-04)

Changes since 0.4.2 (2015-09-30).

1.11. Change Log 73

https://github.com/biocommons/hgvs/issues/321/
https://github.com/biocommons/hgvs/issues/321/
https://github.com/biocommons/hgvs/commit/70c13e5a0643
https://github.com/biocommons/hgvs/issues/319/
https://github.com/biocommons/hgvs/commit/fa5bb5fb9a50
https://github.com/biocommons/hgvs/issues/299/
https://github.com/biocommons/hgvs/commit/3e016264457d
https://github.com/biocommons/hgvs/issues/282/
https://github.com/biocommons/hgvs/commit/5e6fd1524204
https://github.com/biocommons/hgvs/commit/5e6fd1524204
https://github.com/biocommons/hgvs/issues/294/
https://github.com/biocommons/hgvs/commit/e28b5a525f6e
https://github.com/biocommons/hgvs/issues/292/
https://github.com/biocommons/hgvs/commit/64e31808a760
https://github.com/biocommons/hgvs/issues/253/
https://github.com/biocommons/hgvs/commit/a9bd9ab405bc

HGVS, Release 1.4.0

New Features

• closes #281: install hgvs-shell executable with package [BROKEN: bece4e961cd4]

Other Changes

• closes #289: work around pycharm bug PY-4213 [BROKEN: 19c0d4fefbfd]

• added 0.4.2 changelog (after the tagged commit :-() [BROKEN: 4a596322bceb]

0.4.2 (2015-09-30)

Changes since 0.4.1 (2015-09-14).

Bug Fixes

• fixes #284: validation fails for g variants [BROKEN: 9732eaf5be1c]

0.4.1 (2015-09-14)

Changes since 0.4.0 (2015-09-09).

Bug Fixes

• fixes #274, #275: initialize normalizer with same alt_aln_method as EasyVariantMapper [BROKEN:
43e174d6f8af]

• fixes #276: raise error when user attempts to map to/from c. with non-coding transcript [BROKEN:
3f7b659f4f02]

0.4.0 (2015-09-09)

Changes since 0.3.7 (2015-06-23). See issues at milestone 0.4.0.

Special Attention

• #227: x_to_r and r_to_x methods were renamed to x_to_n and n_to_x as part of support for non-coding tran-
scripts.

• #231: The UTA data provider will use a recently updated database by default (uta_20150827). Clients with cus-
tom configurations should use postgresql://anonymous:anonymous@uta.biocommons.org/uta/uta_20150827.
(Note the change of hostname, username, and password as well; see Deprecations.)

• #238: Most methods now raise HGVSDataNotAvailableError when expected data is not available. Previously,
None was returned for some methods.

• #244: Removed cache_transcripts argument from VariantMapper. This argument was deprecated in 0.3.0 and is
now obsolete. Dataproviders are now expected to cache data.

• #246: Remove hgvsX_to_hgvsY methods. These methods were deprecated in 0.3.0 and are now obsolete.

74 Chapter 1. Contents

https://github.com/biocommons/hgvs/issues/281/
https://github.com/biocommons/hgvs/commit/bece4e961cd4
https://github.com/biocommons/hgvs/issues/289/
https://youtrack.jetbrains.com/issue/PY-4213
https://github.com/biocommons/hgvs/commit/19c0d4fefbfd
https://github.com/biocommons/hgvs/commit/4a596322bceb
https://github.com/biocommons/hgvs/issues/284/
https://github.com/biocommons/hgvs/commit/9732eaf5be1c
https://github.com/biocommons/hgvs/issues/274/
https://github.com/biocommons/hgvs/issues/275/
https://github.com/biocommons/hgvs/commit/43e174d6f8af
https://github.com/biocommons/hgvs/commit/43e174d6f8af
https://github.com/biocommons/hgvs/issues/276/
https://github.com/biocommons/hgvs/commit/3f7b659f4f02
https://github.com/biocommons/hgvs/commit/3f7b659f4f02
https://github.com/biocommons/hgvs/milestones/0.4.0
https://github.com/biocommons/hgvs/issues/227/
https://github.com/biocommons/hgvs/issues/231/
https://github.com/biocommons/hgvs/issues/238/
https://github.com/biocommons/hgvs/issues/244/
https://github.com/biocommons/hgvs/issues/246/

HGVS, Release 1.4.0

• #247: Dup and Repeat “seq” instance variable renamed to “ref” for consistency.

• EasyVariantMapper, Normalizer, and Validator now fetch sequence data at runtime, which may raise perfor-
mance and privacy concerns. Users may wish to read Privacy Issues in the documentation.

Deprecations

• UTA: UTA now uses anonymous:anonymous as the username:password. uta_public:uta_public will be obsolete
shortly.

Bug Fixes

• #248: Don’t raise validation exception when del sequence is empty [BROKEN: b6c07d329d36]

New Features

• #44: Added variant normalization and use during mapping. Thanks to Meng Wang and Kevin Jacobs for
contributions. (pull request #17)

• #168: EasyVariantMapper supports replacing the reference sequence during mapping and enabled by default.

• #227: Implement initial support for non-coding transcripts.

• #230: Allow full IUPAC for NA and AA, with tests. Previously, the grammar admitted only ACGTU.

• #233: Added get_similar_transcripts() to data UTA provider to expose UTA’s tx_similarity view.

• #234, #241: Preferentially use transcript-protein accession associations from RefSeq when mapping c. to p.
variants. Previously, when multiple protein accessions were associated with a single distinct sequence, the p.
accession was arbitrary.

• #236, #240: Added seqfetcher.SeqFetcher to fetch sequences from NCBI & Ensembl

• #250: Implemented configuration module; hgvs.global_config is initialized once and available globally

• #251: Parens now optional around p. edits; default is enabled per HGVS spec
(hgvs.global_config.mapping.inferred_p_is_uncertain)

• #255: variants normalized by EasyVariantMapper by default [BROKEN: 1b85d4deabc3]

• #261: Replace reference default from config (hgvs.global_config.mapping.replace_reference)

• UTA is now available as a docker image for local installation. See Local Installation of UTA (optional).

Other Changes

• #213: Clarify warning message when validating intronic variants.

• #254: Support inversion, conversion, and nadupn variants

• Added misc/experimental/tx-seq-discrepancies to identify genomic locations of reference-transcript discrepan-
cies

• Added variant context method to evm (temporary location, but useful for debugging)

• HGVSInternalError now subclasses HGVSError (not Exception) [BROKEN: ff6cd4dc51dc]

• Lots of documentation updates.

1.11. Change Log 75

https://github.com/biocommons/hgvs/issues/247/
http://hgvs.readthedocs.org/en/default/privacy.html
https://github.com/biocommons/hgvs/issues/248/
https://github.com/biocommons/hgvs/commit/b6c07d329d36
https://github.com/biocommons/hgvs/issues/44/
https://github.com/biocommons/hgvs/issues/168/
https://github.com/biocommons/hgvs/issues/227/
https://github.com/biocommons/hgvs/issues/230/
https://github.com/biocommons/hgvs/issues/233/
https://github.com/biocommons/hgvs/issues/234/
https://github.com/biocommons/hgvs/issues/241/
https://github.com/biocommons/hgvs/issues/236/
https://github.com/biocommons/hgvs/issues/240/
https://github.com/biocommons/hgvs/issues/250/
https://github.com/biocommons/hgvs/issues/251/
https://github.com/biocommons/hgvs/issues/255/
https://github.com/biocommons/hgvs/commit/1b85d4deabc3
https://github.com/biocommons/hgvs/issues/261/
https://github.com/biocommons/hgvs/issues/213/
https://github.com/biocommons/hgvs/issues/254/
https://github.com/biocommons/hgvs/commit/ff6cd4dc51dc

HGVS, Release 1.4.0

• Raise HGVSParserError (instead of ometa.runtime.ParseError) when parsing fails [BROKEN: efa93fe29d15]

• The UTA data provider now checks for the requested schema on connection and provides more informative
errors on failure.

• hdp.data_version returns schema name for UTA since that that is the conventional use.

• Use autocommit to prevent transaction overhead and locks [BROKEN: 65d69e41716e]

Internal and Developer Changes

• #263: Trying out a new tag-based changelog mechanism for 0.4.0 and 0.4 series.

• All code will be mercilously reformmated with yapf occasionally using .style.yapf

• Build and upload wheel packages (in addition to existing eggs and tarballs)

• Docs significantly overhauled and moved to readthedocs.org with automatic webhook-based building

• Enable users to set application_name when connecting [BROKEN: 835ac7771909]

• _UTA_URL_KEY (dev use only) will switch URLs to any in hgvs/_data/defaults.ini

• on import of hgvs, emit logging info line w/version [BROKEN: aa97f2c1cdc8]

• sped up most tests by using setUpClass() rather than setUp() [BROKEN: a6d227f6a3e0]

This is the monolithic changelog for the 0.0, 0.1, 0.2, and 0.3 series of hgvs releases. Beginning with 0.4, changes will
be recorded in release-specific files; see Change Log.

1.11.7 0.3 Series

0.3.7 (2015-06-23)

Client Changes

• #233: Expose UTA’s notions of transcript similarity via the UTA data provider. See get_similar_transcripts().

• #236: Added seqfetcher.SeqFetcher to fetch sequences from NCBI & Ensembl

• #199: Improved installation documentation re: PostgreSQL dependency

• #232: Migrated to major.minor versions for schemas and schema provider-client compatibility; “compatible” :=
(provided x == required x) ^ (provided y >= required y)

• misc/experimental/vcf-add-hgvs: optionally generate coding variants

• numerous doc updates

Internal and Developer Changes

• add missing requests library to setup.py (only affected developers)

• updated bioutils version in setup.py

76 Chapter 1. Contents

https://github.com/biocommons/hgvs/commit/efa93fe29d15
https://github.com/biocommons/hgvs/commit/65d69e41716e
https://github.com/biocommons/hgvs/issues/263/
https://github.com/biocommons/hgvs/commit/835ac7771909
https://github.com/biocommons/hgvs/commit/aa97f2c1cdc8
https://github.com/biocommons/hgvs/commit/a6d227f6a3e0
https://github.com/biocommons/hgvs/issues/233/
https://github.com/biocommons/hgvs/issues/236/
https://github.com/biocommons/hgvs/issues/199/
https://github.com/biocommons/hgvs/issues/232/

HGVS, Release 1.4.0

0.3.6 (2015-06-02)

• #228: IndexError when schema name is empty

• #228: updated CHANGELOG

• hgvs/edit.py: doc string indentation fix

0.3.5 (2015-05-19)

• #219: remove validation requirement that ref != alt

• #220: Do not modify cached results when building CIGAR (pkaleta)

• #226: support schema names in db urls; standardized search_path handling; merge connection pool and single-
threaded client classes

• added AUTHORS

0.3.4 (unreleased)

0.3.3 (2014-08-28)

• #194: fix bug when reverse complementing nucleotides parsed from unicode

• #197: use utf-8 coding, unicode, and all py3k __future__ features in all source

• #198: documentation improvements

• #202: implement mutalyzer comparisons

• #203: return HGVSParseError instead of ometa.runtime.ParseError for parsing errors

• #205: fix “base” bias for the exact middle of an odd-length intron

• #206: make get_tx_for_region return only transcripts with alignment data

• added flake8 configuration

• added regression test framework (tests/data/gcp/regression.tsv)

0.3.2 (2014-07-12)

• #194: fix bug when reverse complementing nucleotides parsed from unicode

0.3.1 (2014-07-12)

• #193: fix lookup table for NC_000014.8 (was .10)

• #192: deprecated VariantMapper cache_transcripts param and replaced with always-on lru cache in uta data
provider

1.11. Change Log 77

https://github.com/biocommons/hgvs/issues/228/
https://github.com/biocommons/hgvs/issues/228/
https://github.com/biocommons/hgvs/issues/219/
https://github.com/biocommons/hgvs/issues/220/
https://github.com/biocommons/hgvs/issues/226/
https://github.com/biocommons/hgvs/issues/194/
https://github.com/biocommons/hgvs/issues/197/
https://github.com/biocommons/hgvs/issues/198/
https://github.com/biocommons/hgvs/issues/202/
https://github.com/biocommons/hgvs/issues/203/
https://github.com/biocommons/hgvs/issues/205/
https://github.com/biocommons/hgvs/issues/206/
https://github.com/biocommons/hgvs/issues/194/
https://github.com/biocommons/hgvs/issues/193/
https://github.com/biocommons/hgvs/issues/192/

HGVS, Release 1.4.0

0.3.0 (2014-06-19)

• #103: significantly updated documentation

• #162: provide simplified mapping interface, EasyVariantMapper

• #171: integrate the data provider interface into hgvs, obsoleting bdi. See hgvs.dataproviders.*

• #177: rename mapping functions to x_to_y (dropping “hgvs” prefix)

• #180: made set_uncertain an internal method (_set_uncertain)

• #181: renamed hgvs.hgvsmapper.HGVSMapper to hgvs.variantmapper.VariantMapper

• #184: rename HGVSPosition.seqref to ac

• #185: enable validator to use HDPI to fetch sequence data; mfdb now required only for genomic sequences

• Makefile: print machine info during testing to calibrate/debug timing probs

• moved hgvs/data to hgvs/_data to emphasize it is internal and avoid tab completion on it

• remove unused args from VariantMapper.c_to_p()

• replace u1/uta1 references with hdp; update docs

• replaced bdi with hdp when referencing the data provider; tests pass

• setup.py: removed nose-timer (appeared to cause problems with pip install)

• standardize exception names with “HGVS” prefix

• updated examples/manuscript-example; other minor changes

1.11.8 0.2 Series

0.2.2 (2014-06-12)

• #103: significantly updated documentation

• #142: added BIC test cases

• #167: disable the any_variant rule because it is confusing

• #179: added quick and extra tags to tests; updated Makefile to support make test, test-quick, test-extra; removed
test_hgvs_parser_real (but kept gcp version)

• added support for testing models (“models” attr and test-models)

0.2.1 (2014-06-11)

• #157: don’t reverse complement numeric “sequences” (as in del26)

• #159: Update comment in tests/data/ADRA2B-dbSNP.tsv

• #161: transform examples to sphinx doc (+upload)

• #167: disable the any_variant rule because it is confusing

• #175: added type to NADupN and Copy edit classes

• Added Important Notes section in README.rst

• Makefile: “test” target should depend on “setup” after all

78 Chapter 1. Contents

https://github.com/biocommons/hgvs/issues/103/
https://github.com/biocommons/hgvs/issues/162/
https://github.com/biocommons/hgvs/issues/171/
https://github.com/biocommons/hgvs/issues/177/
https://github.com/biocommons/hgvs/issues/180/
https://github.com/biocommons/hgvs/issues/181/
https://github.com/biocommons/hgvs/issues/184/
https://github.com/biocommons/hgvs/issues/185/
https://github.com/biocommons/hgvs/issues/103/
https://github.com/biocommons/hgvs/issues/142/
https://github.com/biocommons/hgvs/issues/167/
https://github.com/biocommons/hgvs/issues/179/
https://github.com/biocommons/hgvs/issues/157/
https://github.com/biocommons/hgvs/issues/159/
https://github.com/biocommons/hgvs/issues/161/
https://github.com/biocommons/hgvs/issues/167/
https://github.com/biocommons/hgvs/issues/175/

HGVS, Release 1.4.0

• added example for stringification to README.rst

• added examples/Manuscript Example.ipynb

• added installation status (from hgvs-integration-test at travis-ci) and build status (from drone.io)

• hgvsmapper: use deepcopy when converting edits

• removed unused sphinx_pypi_upload.py

• updated examples to use uta1

0.2.0 (2014-03-09)

• updated README.rst example to use uta1; added .rst files to nosetest testing

• added ci-test-ve; switched to hgtools 5.0 use_vcs_version in setup.py

• take 1 on reconcililing test differences between internal jenkins and drone.io

• removed accidental tag (!); added sphinxcontrib-fulltoc to setup.py

1.11.9 0.1 Series

0.1.11 (2014-03-05)

• removed accidental tag (!); added sphinxcontrib-fulltoc to setup.py

• updated package metadata; removed requirements.txt; tests pass

0.1.9 (2014-03-05)

• #40: added additional tests

• #114: add test that checks that all rules have been tested - and add tests for rules that were missed!

• #135: add more tests; fixed and enabled tests previously commented out

• #147: update tests to use updated sqlite test DB

• Added U14680.1 (BIC tx) to grammar test

• ExtrinsicValidator should not guess about bdi and mfdb sources; instead require caller to specify

• Fixed an un-handled case for parsing AA frameshifts - short form, e.g. “Ala97fs” (no alt AA). Added tests.

• Makefile, setup,py, setup.cfg sync with sibling projects

• Merged hgvs_using_uta1 into default

• Merged in extrinsic_validation (pull request #5)

• Remove redundant test

• added Validator class that wraps instrinsic and extrinsic validation

• added bdi accession testing

• added codeship status badge to README.rst, for testing

• added creating-a-variant example

• added sbin/get-dbsnp-tests-for-gene

1.11. Change Log 79

https://github.com/biocommons/hgvs/issues/40/
https://github.com/biocommons/hgvs/issues/114/
https://github.com/biocommons/hgvs/issues/135/
https://github.com/biocommons/hgvs/issues/147/
https://github.com/biocommons/hgvs/issues/5/

HGVS, Release 1.4.0

• added tests from dbSNP for 6 new gene; fixed probs with uncertainty and Terd+ in existing tests

• bug fixes for uta1 integration; all tests pass except for sqlite db test

• checking cigar ref tgt orientation

• cigar intron count fix

• cut DNAH11 tests to representative set (apx 80% cut)

• finished integrating uta1 into hgvs and started updating tests

• fixed DNAH11-dbSNP tests

• fixed bug when falling off transcripts

• hgvsmapper is updated with uta1 requirements. testing modifications using hgvs-shell

• removed accession test from extrinsic validator (sequence lookup covers accession lookup)

• removed codeship badge

• renamed ~Validation to ~Validator to keep with class-as-actor naming scheme

• starting external validation with bdi

• testing

• trivial change to tickle codeship build

• updated edit type and tests to include identity for sub e.g., T>T

• updated external validation using bdi; added identity edit type for sub T>T; added HGVSValidationException
class; added sample tests for mfdb

• updated package metadata; removed requirements.txt; tests pass

• upped bdi min version to >=0.1.0 (interface1)

• use pip installation status as build status since that’s what users will experience

• working through updating TM and IM. HM g_to_c appears to work

0.1.8 (2014-01-22)

• updated README.rst example for bdi connect()

0.1.7 (2014-01-22)

• #106, #108: parse uncertain hgvsp/hgvsr; converter produces uncertain hgvsp.

• #110, #111: handle cases of entire gene deletion (p.0?) and stop codon in frame (p.?). Updated tests.

• #65, #89: can now parse Met1? and ext*N; removed extra fs parsing from delins.

• #65: cleanup; AASub can go back to being a subclass of AARefAlt

• #65: def_p_pos needs to accept term13 as well as aa13 for ext; tests updated.

• #65: fixed an ordering bug; added tests.

• #65: fs/ext are now their own pro_edit types; they correspond to their own class objects. 5’ extensions and 3’
extensions can be parsed. Tests updated.

• #65: should be stringifying * as Ter; fixed code in 2 lines & tests in many.

80 Chapter 1. Contents

https://github.com/biocommons/hgvs/issues/106/
https://github.com/biocommons/hgvs/issues/108/
https://github.com/biocommons/hgvs/issues/110/
https://github.com/biocommons/hgvs/issues/111/
https://github.com/biocommons/hgvs/issues/65/
https://github.com/biocommons/hgvs/issues/89/
https://github.com/biocommons/hgvs/issues/65/
https://github.com/biocommons/hgvs/issues/65/
https://github.com/biocommons/hgvs/issues/65/
https://github.com/biocommons/hgvs/issues/65/
https://github.com/biocommons/hgvs/issues/65/

HGVS, Release 1.4.0

• #65: tighten ext rules; require a number for new start positions.

• #90: added dup in hgvsmapper; allowed rev complement util to handle None (was triggering exceptions); added
tests for dup.

• #91: add extension support for parsing copyN and DupN

• #91: make adding default totally extendable by allowing additional imports for the base grammar (default empty
list)

• #91: simplest implementation of parsing copyN, dupN - added directly to grammar (no extension)

• #99: fix aa13t parsing

• #99: fix aa13t parsing, take 2; tests pass (including G* test)

• #99: re-enable tests related to this issue.

• Fixed a bug where del5insT was getting stringified as “5>T”

• added datum to range checking

• added datum to range checking

• added edit type as a property to the edit object; updated tests; added examples to hgvs-shell

• added edit type as a property to the edit object; updated tests; added examples to hgvs-shell

• close anonymous branch

• closed experimental dev branch

• closed hgvsvalidator feature branch on wrong default branch (grafted to default)

• doc updates and Makefile fix after fouled merge

• fixed minor doc typos

• hgvsc_to_hgvsp - ac defaults to None; seems better than forcing the user to pass ‘None’ as a param if they want
the protein accession looked up.

• iv grammar branch

• make doc is broken & not used; removing it from make ci-test for now.

• merged in validator (pull request #4)

• minor change to rebase

• removed links section from README

• renamed hgvsvalidator to validator and corresponding test; corrected start-end check added tests

• revised intrinsic validator and tests; deleted requests from setup.py

• updated README.rst example for bdi connect()

• updated docs to point back to pythonhosted

• updated installation.rst

• updated ipython notebook examples

• updated railroad building

• updated railroad in docs

• updated the fragile railroad building again

1.11. Change Log 81

https://github.com/biocommons/hgvs/issues/65/
https://github.com/biocommons/hgvs/issues/90/
https://github.com/biocommons/hgvs/issues/91/
https://github.com/biocommons/hgvs/issues/91/
https://github.com/biocommons/hgvs/issues/91/
https://github.com/biocommons/hgvs/issues/99/
https://github.com/biocommons/hgvs/issues/99/
https://github.com/biocommons/hgvs/issues/99/
https://github.com/biocommons/hgvs/issues/4/

HGVS, Release 1.4.0

0.1.6 (2014-01-11)

• updated docs to point back to pythonhosted

• added setuptools to requirements.txt

• updated requirements.txt

• fixed bug in setup.py re: classifiers

0.1.5 (2014-01-11)

• fixed bug in setup.py re: classifiers

0.1.4 (2014-01-11)

• #97: a bagillion doc updates; branch closed

0.1.3 (2014-01-11)

• #60: 1st stab at grammar tests from the bottom-up (through locations/definite positions). (See header in
test_hgvs_grammar_full.py for details.) Also added a few error checking tests.

• #60: drop None from SequenceVariant (use case - only parsing an edit); grammar update for offset

• #60: implement cleanup; distributed remaining items to separate issues.

• #73: migrate hgvs to bdi-based protein accession lookup

• #90: fixed typo for delins and ins for parsing hgvsp

• #92: add a subclass of AARefAlt (AASub) which overrides __str__ to get the representation right; grammar
update

• #92: fix error in NARefAlt

• #93: added variant liftover for HGVS projector, with tests

• #93: implemented HGVS projector for interval liftover

• #96: cleanup and test update

• #96: deleting tests/data

• #96: fix file

• #96: name cleanup

• #96: removed nightly test target

• #96: short set of real data for gcp parsing

• #97: a bagillion doc updates; branch closed

• #97: major doc restructuring, cleanup, additions

• A few more basic tests

• Add parser test which just tries to parse all the cvids (g, c and p) - currently skips unsupported forms. Also
tweaked the r variants in the all cvid file (T should be U).

• Add some basic intervalmapper tests based on the coverage results

82 Chapter 1. Contents

https://github.com/biocommons/hgvs/issues/97/
https://github.com/biocommons/hgvs/issues/60/
https://github.com/biocommons/hgvs/issues/60/
https://github.com/biocommons/hgvs/issues/60/
https://github.com/biocommons/hgvs/issues/73/
https://github.com/biocommons/hgvs/issues/90/
https://github.com/biocommons/hgvs/issues/92/
https://github.com/biocommons/hgvs/issues/92/
https://github.com/biocommons/hgvs/issues/93/
https://github.com/biocommons/hgvs/issues/93/
https://github.com/biocommons/hgvs/issues/96/
https://github.com/biocommons/hgvs/issues/96/
https://github.com/biocommons/hgvs/issues/96/
https://github.com/biocommons/hgvs/issues/96/
https://github.com/biocommons/hgvs/issues/96/
https://github.com/biocommons/hgvs/issues/96/
https://github.com/biocommons/hgvs/issues/97/
https://github.com/biocommons/hgvs/issues/97/

HGVS, Release 1.4.0

• Fill in more protein edit tests

• Fixed a bug breaking n_edit and m_edit; updated tests.

• Make documentation more Sphinx-friendly

• More grammar tests; simplified dup check for hgvsc to p conversion

• Tweak HGVSp expected so an edit creating a stop codon is represented by Ter instead of * (to match hgvs string
code)

• add alternative UTA_DB_URL options to Makefile; cleanup eggs in cleanest (not cleaner) and bdist et al. in
cleaner (not cleanest)

• added .travis.yml

• added a projector example

• added classifiers and keywords to setup.py

• added license to docs

• added railroad diagram to docs

• additional grammar tests - HGVS edits are failing commented out for now

• bug fix: make test was running nightly tests

• build reST doc for railroad grammar

• code cleanup

• commenting out test until I am in a place where I can run it

• doc updates

• eliminated most sphinx warnings

• lots of doc restructuring and consolidation

• minor cleanup

• more grammar tests

• removed reST examples

• sync default into branch

• sync default into dev

• updated README with pypi info

• updated installation

• updated misc/hgvs-shell for new bdi.uta0.connect()

• updated railroad diagram to include version number

• updated sphinx doc/source/conf.py

• yet more doc changes

0.1.2 (2014-01-05)

• #85: adapted hgvs to bdi with runtime-selectable UTA connections

• updated README with pypi info

• doc updates

1.11. Change Log 83

https://github.com/biocommons/hgvs/issues/85/

HGVS, Release 1.4.0

• now depend on uta and bdi from PyPI (not dependency_links); sync’d Makefile and setup.py with uta; updated
test and docs targets

0.1.1 (2014-01-03)

• #64: handle the following: (1) indel crosses stop codon; (2) indel crosses start codon; need to retest on full suite

• #64: update 4 tests to reflect p.Met1? behavior for deletions crossing from 5’utr to cds:

• #83: cleanup fs* cases where mutalyzer assigns fs*N where N = end of transcript instead of an actual stop codon
(expected result is now fs*?)

• #83: comment out tests that need review/cleanup (and added comment); fixed tests where expected result was
incorrect (still need to check tests w/ no expected result)

• #83: fill in intronic variants with expected hgvsp results (p.?) per curators

• #84: ext with no stop codons are represented as ext*? - updated tests accordingly

• #84: fix expected result

• Turn off dbg

• Turn off more dbg

• added lots of documentation

• added Apache license and code boilerplate to all source files and scripts

• doc updates

• fix coverage by calling tests via python setup.py nosetest; fix test name

• logo: rotated, moved to subdir, created favicon

• made png and ico logos transparent

• moved sphinx sources to doc/source and updated configs

• now depend on uta and bdi from PyPI (not dependency_links); sync’d Makefile and setup.py with uta; updated
test and docs targets

• removed test-setup-coverage from Makefile dependencies (put in setup.py instead)

• s/locusdevelopment/invitae/

• updated doc static images

• updated hgvs-logo.png per Makefile

• updated setup.py “license” attribute

• vastly improved sphinx documentation. More to do

0.1.0 (2013-12-30)

• #52: generate syntax/railroad diagrams (in misc/railroad/)

• #56: updated tests; fixed fs*N (only one still broken)

• #62: synchronized setup files among UTA program components

• #66: added support for p.0, p.=, p.?, p.(=), p.(?), with tests

• #66: updated grammar for p.0, p.=, p.?, p.(=), p.(?) to reject invalid p.(0), etc.

84 Chapter 1. Contents

https://github.com/biocommons/hgvs/issues/64/
https://github.com/biocommons/hgvs/issues/64/
https://github.com/biocommons/hgvs/issues/83/
https://github.com/biocommons/hgvs/issues/83/
https://github.com/biocommons/hgvs/issues/83/
https://github.com/biocommons/hgvs/issues/84/
https://github.com/biocommons/hgvs/issues/84/
https://github.com/biocommons/hgvs/issues/52/
https://github.com/biocommons/hgvs/issues/56/
https://github.com/biocommons/hgvs/issues/62/
https://github.com/biocommons/hgvs/issues/66/
https://github.com/biocommons/hgvs/issues/66/

HGVS, Release 1.4.0

• #72: update hgvs to use bdi (no direct connections to uta anymore)

• Close branch jenkins.

• Convert test input and consumer to use 4-column format

• Fix extension for frameshift case; update test to get around dupN (trim the N)

• Fix tag

• Last cleanup before merge

• README.rst: fixed preformatted text (that wasn’t)

• Refactored cp tests to work from a common base which more closely resembles the gcp test. All-CVID test
input file is in 4-column format (lots of missing data, though)

• Revamp of c to p based on tests results; checkpoint. Sanity & EH tests all run.

• Update makefile to include a mechanism for generating code coverage during tests

• Updated Makefile test task to skip tests prefixed with test_nightly; added task to run all; enabled all cvid test to
check this

• add missing files to package_data

• added Apache license and code boilerplate to all source files and scripts

• added architecture & dependency info to README.rst

• added comments to failed and broken tests

• added examples directory

• added sbin/test-runner (see script header for example)

• added setuptools>2.0 to setup.py (testing); updated README.rst

• close branch

• corrected minor README typo

• fix test

• fixed bug in reported AA edit for extensions

• fixed bug introduced in 63e0baf7c986; removed unnecessary and obsolete edti.interface import in
tests/framework/mock_input_source.py

• fixed bug that caused protein accession to be not looked up when not specified

• fixed bug with unqualified class names in hgvs.pymeta

• hgvsc to hgvsp bug fixes/updates: changed del/dups to represent the c-terminal end; variants in utr, intron & 1st
AA are treated as p.? (subject to review). Cleaned up test data. Tweaked seguid data so the tests pick up the
correct NP in a case where there’s more than one match - mainly just to get the tests to pass.

• hgvsc to p takes an accession

• make the nightly start from make cleanest (tougher)

• merge into default

• more README and setup.py updates

• move edti bits to bdi

• moved misc/hgvs-shell to sbin

• setup.py: testing yet another dependency_links format

1.11. Change Log 85

https://github.com/biocommons/hgvs/issues/72/

HGVS, Release 1.4.0

• updated README.rst

• updated bdi and tests to use external UTA instance

• updated examples dir

• updated logo and README

1.11.10 0.0 Series

0.0.9 (2013-12-16)

• added comments to failed and broken tests

• renamed grammars to .pymeta

• consolidated g-c-p testing into a single test file; commented out putatively broken tests; DNAH11 works!

• add forgotten sbin/fasta-seguid for commit -2 (0d29d0ea2d42)

• fixed minor grammar bugs re: AA term and frameshift

• added accession lookup for all of RefSeq protein

• got ‘make jenkins’ target working

• harmonized with UTA Makefile and setup.py to try to get tests working

• added biopython to setup.py

• fixed pro_eq grammar bug mentioned in #42

• Updated DNAH11 and NEFL tests. They run, so I’ll mark as complete, but there are errors associated with the
proteins

• hgvsc_to_hgvsp: Fixed a delins bug

• hgvsc_to_hgvsp: Fixed bug in insertion indexing; improved exception handing

• added misc/hgvs-shell to simplify manual testing

• hgvs tests for DNAH11 and NEFL -> note protein not currently working just change if statement

• initial checkin for jenkins branch; want to test this in the build context

• Close branch c_to_p

• Merged in c_to_p (pull request #3)

• Incorporate AASpecial; tests pass.

• merge from default

• merged default into c_to_p

• added AASpecial to handle p.=, p.?, p.0 (and parenthesized versions)

• fixed setup.py issue that caused omission of hgvs.utils on install

• Forgot to add a test file to mercurial

• Merged from default; fixed a test.

• Make test file name more consistent

• SImplified comparison in the event of a simple substitution; updated tests so the failed tests are commented out.

• Reformatted Emily’s test data to make it more consumer-friendly; continuous test tweaking - latest checkpoint.

86 Chapter 1. Contents

https://github.com/biocommons/hgvs/issues/42/
https://github.com/biocommons/hgvs/issues/3/

HGVS, Release 1.4.0

• Another couple of fixes based on EH tests; checking in working version of the tests.

• updated hgvsmapper with all g<->r<->c transformations

• remove explicit class references from makeGrammar invocation, require fully-qualified class name in
hgvs.ometa

• close uncertainty branch

• added chr_to_NC in utils, added c_to_g in hgvsmapper

• Name cleanup for tests

• Tests now play nicely with both real data and the mock data.

• Add call to get_tx_seq()

• Missed a rename in the tests.

• Rename test classes to be a bit more consistent with their use.

• Inserted hgvsc_to_hgvsp into hgvsmapper.

• merge from default

• align with developer.rst conventions on naming hgvs variants vs. strings

• Fix tests to run in makefile context; some more documentation

• revamped hgvs_c_to_p so its interface matches hgvsmapper; should make incorporation a simple matter of
copying the hgvsc_to_hgvsp method in. Updated tests accordingly. Moved tests to top-level.

• Merge from default

• Re-arranging code for utils/staging for hgvs mapper.

• Purged debug code

• Ack - last checkin broke the tests; fixed accession setup

• format cleanup

• Incorporate stopgap for protein accession; refactor so interface consumes data in the current UTA format; refac-
tor tests to mimic UTA input; getting actual seq is still a placeholder.

• merging default into c_to_p

• added location uncertainty (parsing, representation, formatting, testing)

• added multifastadb code and tests

• [mq]: hgvsmapper-work

• imported patch hgvs-utils-dir

• added multifastadb tool and tests

• added Rudy’s AA p.= rule

• [mq]: grammar-relo

• added hgvs.stopgap

• Close branch transcriptmapper

• Merged in transcriptmapper (pull request #2)

• added TODO for tracking, prior to merging pull request

1.11. Change Log 87

https://github.com/biocommons/hgvs/issues/2/

HGVS, Release 1.4.0

• Basic handling of variants in non-coding regions; will return p.= in all cases; this does not handle the case where
a 5’utr variant results in the creation of an upstream Met.

• merged with default, TM bug fixes and more tests

• cleanup names (or at least make them a little more descriptive)

• added tm.cds_start_i in place of hard coding cds

• refactoring

• Roll back exon-specific changes and assume input is entire transcript concatenated together; retain the transcript
data as recordtype

• fix test for AA in 2nd exon

• Convert transcript data object to recordtype; add tests for multi-exon (in progress)

• more tests

• additional TM fixes and more tests with multiple exons and strands

• Account for transcripts w/ more than 1 exon (test input assumed one)

• added some 1-exon tests

• Incorporate aa util and extend interval class (for test data); convert code to produce SequenceVariant objects for
hgvs c to p. Also hacked in a way to handle p.= into the grammar (should be reviewed before merge).

• bug fixes

• Merged default into c_to_p

• added enum to transcriptmapper tests

• Last cleanup before merging default into here

• all input/output is hgvs-based. updated tests accordingly

• Close branch protein-variants

• Merged in protein-variants (pull request #1)

• hgvs.edit: fixed and improved fs handling, and added mediocre tests

• hgvs.utils: added Xaa=X, Ter=*, Sec=U for aa1-to-aa3 & aa3-to-aa1 translation

• code cleaning

• finished tests for transcriptmapper

• finished all the g,r,c conversions adding more tests

• More cleanup; simplify variant inserter code

• updated transcriptmapper to support g->r, r->g, r->c and appropriate tests

• minor cleanup

• variant insert tests

• merged edti-uta0 branch

• closing branch prior to merge

• edti: added __metaclass__ to edti.interface; added fetch_gene_info to uta0

• hgvs.edti: EDTI base interface and UTA0 implementation milestone

• hgvs.parser: add function attributes for every rule to enable, e.g., Parser.parse_c_interval(. . .)

88 Chapter 1. Contents

https://github.com/biocommons/hgvs/issues/1/

HGVS, Release 1.4.0

• implemented p. parsing and formatting, with tests

• hgvs.utils: handle case when aa string is None

• hgvs.utils: added aa_to_aa{1,3} functions to coerce to 1- or 3-letter amino acids

• hgvs.utils: added protein 1-letter and 3-letter conversion

• Checkpoint for new branch (hgvs c to p)

• branched transcriptmapper

• improved parsing of hgvs_position rules (i.e., without edits) to handle g,m,n,r,c,p types distinctly

• added {gmn,c,r,p}_edit rule to parse variants without accesssions (e.g., c.76A>T)

• renamed DelIns class to RefAlt

• renamed Variant to SequenceVariant, and instance variant seqref to ac

• closed abandoned protein-support branch

• updated parser tests to include aspirational and “reject” tests

• [mq]: import-location-changes

• [mq]: import

• hgvs.location: renamed location classes; added BaseOffset position for r. and c.; removed predicate methods
(is_exonic, etc);

• incomplete, buggy milestone

• setup.py: use full path for doc/description.rst

• updated CDSPosition to include datum and added tests

• use get_distribution() rather than require() to fetch version

• Fix for pathing to grammar.txt from within hgvs.parser.Parser

• modified setup.py to zipsafe false

• TODO edited online with Bitbucket

• Making setup.py file pathing absolute

• Fix for setup.py

• updated Makefile and setup.py

• revert directory to current after upload

• fixed bug in HGVSPosition.__str__ and added HGVSPosition test

0.0.7 (2013-10-11)

• fixed bug in HGVSPosition.__str__ and added HGVSPosition test

• collapsed grammar cases for c_pos; fixed variant test case typo

0.0.6 (2013-10-11)

• collapsed grammar cases for c_pos; fixed variant test case typo

• updated docs; fixed typo in variant

1.11. Change Log 89

HGVS, Release 1.4.0

0.0.5 (2013-10-11)

• updated docs; fixed typo in variant

• added HGVSPosition (aka HGVS Lite)

0.0.4 (2013-10-11)

• added HGVSPosition (aka HGVS Lite)

• “simple” (single site) variants now pass tests

• update hgvs.__init__ and sphinx to use version from hgtools

0.0.3 (2013-10-10)

• update hgvs.__init__ and sphinx to use version from hgtools

• removed home-grown hg versioning in favor of hgtools

• removed virtualenv support and cleaned up Makefile

• milestone sync; c, gmn, and r types mostly work; some tests broken

• updated variant and added test

• updated grammar (more to do) and tests

• added hgvs.posedit and tests

• updated hgvs.edit

• removed CDSInterval (will use Interval for all intervals)

• fixed typo

• update hgvs.location and tests

• minor setup.py changes

0.0.2 (2013-09-20)

• minor setup.py changes

• grammar simplification; added Laros grammar, examples, comments

• Reverted Lawrence’s changes to edit.py (after discussing with him).

• Adding some convenience properties to be used in Geneticus.

• updated grammar; added README.rst

• added missing deps to setup.py; switched to plain ole distutils

• added developer notes, logo, sphinx config

0.0.1 (2014-08-01)

• initial commit

90 Chapter 1. Contents

HGVS, Release 1.4.0

1.12 License

The hgvs package is released under the Apache License 2.0, the text of which appears below:

Apache License
Version 2.0, January 2004

http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.

"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"

(continues on next page)

1.12. License 91

https://github.com/biocommons/hgvs
http://www.apache.org/licenses/LICENSE-2.0

HGVS, Release 1.4.0

(continued from previous page)

means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:

(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and

(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and

(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one

(continues on next page)

92 Chapter 1. Contents

HGVS, Release 1.4.0

(continued from previous page)

of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.

You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,

(continues on next page)

1.12. License 93

HGVS, Release 1.4.0

(continued from previous page)

or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work.

To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

94 Chapter 1. Contents

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

95

HGVS, Release 1.4.0

96 Chapter 2. Indices and tables

Python Module Index

h
hgvs, 33
hgvs.alignmentmapper, 48
hgvs.assemblymapper, 42
hgvs.config, 33
hgvs.dataproviders.interface, 50
hgvs.dataproviders.uta, 51
hgvs.edit, 34
hgvs.hgvsposition, 37
hgvs.location, 38
hgvs.normalizer, 49
hgvs.parser, 41
hgvs.posedit, 40
hgvs.projector, 47
hgvs.sequencevariant, 40
hgvs.validator, 49
hgvs.variantmapper, 44

97

HGVS, Release 1.4.0

98 Python Module Index

Index

A
aa (hgvs.location.AAPosition attribute), 38
AAExt (class in hgvs.edit), 34
AAFs (class in hgvs.edit), 35
AAPosition (class in hgvs.location), 38
AARefAlt (class in hgvs.edit), 35
AASub (class in hgvs.edit), 35
aaterm (hgvs.edit.AAExt attribute), 34
ac (hgvs.hgvsposition.HGVSPosition attribute), 38
ac (hgvs.sequencevariant.SequenceVariant attribute), 40
AlignmentMapper (class in hgvs.alignmentmapper),

48
alt (hgvs.edit.AAExt attribute), 34
alt (hgvs.edit.AAFs attribute), 35
alt (hgvs.edit.AARefAlt attribute), 35
alt (hgvs.edit.NARefAlt attribute), 36
alt_ac (hgvs.alignmentmapper.AlignmentMapper at-

tribute), 48
alt_aln_method (hgvs.alignmentmapper.AlignmentMapper

attribute), 48
AssemblyMapper (class in hgvs.assemblymapper), 42

B
base (hgvs.location.AAPosition attribute), 38
base (hgvs.location.BaseOffsetPosition attribute), 39
base (hgvs.location.SimplePosition attribute), 39
BaseOffsetInterval (class in hgvs.location), 38
BaseOffsetPosition (class in hgvs.location), 38

C
c_to_g() (hgvs.alignmentmapper.AlignmentMapper

method), 48
c_to_g() (hgvs.assemblymapper.AssemblyMapper

method), 43
c_to_g() (hgvs.variantmapper.VariantMapper

method), 45
c_to_n() (hgvs.alignmentmapper.AlignmentMapper

method), 48

c_to_n() (hgvs.assemblymapper.AssemblyMapper
method), 43

c_to_n() (hgvs.variantmapper.VariantMapper
method), 45

c_to_p() (hgvs.assemblymapper.AssemblyMapper
method), 43

c_to_p() (hgvs.variantmapper.VariantMapper
method), 46

cds_end_i (hgvs.alignmentmapper.AlignmentMapper
attribute), 48

cds_start_i (hgvs.alignmentmapper.AlignmentMapper
attribute), 48

check_datum() (hgvs.location.BaseOffsetInterval
method), 38

cigar (hgvs.alignmentmapper.AlignmentMapper
attribute), 48

cigar_op (hgvs.alignmentmapper.AlignmentMapper
attribute), 48

close() (hgvs.dataproviders.uta.UTA_postgresql
method), 53

Config (class in hgvs.config), 34
ConfigGroup (class in hgvs.config), 34
connect() (in module hgvs.dataproviders.uta), 53
Conv (class in hgvs.edit), 35
copy (hgvs.edit.NACopy attribute), 36

D
data_version() (hgvs.dataproviders.interface.Interface

method), 50
data_version() (hgvs.dataproviders.uta.UTABase

method), 51
database (hgvs.dataproviders.uta.ParseResult at-

tribute), 51
datum (hgvs.location.BaseOffsetPosition attribute), 39
Dup (class in hgvs.edit), 35

E
Edit (class in hgvs.edit), 36
edit (hgvs.posedit.PosEdit attribute), 40

99

HGVS, Release 1.4.0

end (hgvs.location.Interval attribute), 39
ExtrinsicValidator (class in hgvs.validator), 49

F
fill_ref() (hgvs.sequencevariant.SequenceVariant

method), 40
format() (hgvs.edit.AAExt method), 34
format() (hgvs.edit.AAFs method), 35
format() (hgvs.edit.AARefAlt method), 35
format() (hgvs.edit.AASub method), 35
format() (hgvs.edit.Dup method), 35
format() (hgvs.edit.Edit method), 36
format() (hgvs.edit.NARefAlt method), 37
format() (hgvs.edit.Repeat method), 37
format() (hgvs.location.AAPosition method), 38
format() (hgvs.location.BaseOffsetPosition method),

39
format() (hgvs.location.Interval method), 39
format() (hgvs.location.SimplePosition method), 39
format() (hgvs.posedit.PosEdit method), 40
format() (hgvs.sequencevariant.SequenceVariant

method), 40
from_ac (hgvs.edit.Conv attribute), 35
from_pos (hgvs.edit.Conv attribute), 35
from_type (hgvs.edit.Conv attribute), 35

G
g_to_c() (hgvs.alignmentmapper.AlignmentMapper

method), 48
g_to_c() (hgvs.assemblymapper.AssemblyMapper

method), 43
g_to_c() (hgvs.variantmapper.VariantMapper

method), 46
g_to_n() (hgvs.alignmentmapper.AlignmentMapper

method), 48
g_to_n() (hgvs.assemblymapper.AssemblyMapper

method), 43
g_to_n() (hgvs.variantmapper.VariantMapper

method), 46
g_to_t() (hgvs.assemblymapper.AssemblyMapper

method), 44
g_to_t() (hgvs.variantmapper.VariantMapper

method), 46
gc_offset (hgvs.alignmentmapper.AlignmentMapper

attribute), 48
gene (hgvs.hgvsposition.HGVSPosition attribute), 38
gene (hgvs.sequencevariant.SequenceVariant attribute),

41
get_acs_for_protein_seq()

(hgvs.dataproviders.interface.Interface
method), 50

get_acs_for_protein_seq()
(hgvs.dataproviders.uta.UTABase method),
51

get_assembly_map()
(hgvs.dataproviders.interface.Interface
method), 50

get_assembly_map()
(hgvs.dataproviders.uta.UTABase method),
51

get_gene_info() (hgvs.dataproviders.interface.Interface
method), 50

get_gene_info() (hgvs.dataproviders.uta.UTABase
method), 51

get_pro_ac_for_tx_ac()
(hgvs.dataproviders.interface.Interface
method), 50

get_pro_ac_for_tx_ac()
(hgvs.dataproviders.uta.UTABase method),
51

get_seq() (hgvs.dataproviders.interface.Interface
method), 50

get_seq() (hgvs.dataproviders.uta.UTABase method),
51

get_similar_transcripts()
(hgvs.dataproviders.interface.Interface
method), 50

get_similar_transcripts()
(hgvs.dataproviders.uta.UTABase method),
51

get_tx_exons() (hgvs.dataproviders.interface.Interface
method), 50

get_tx_exons() (hgvs.dataproviders.uta.UTABase
method), 51

get_tx_for_gene()
(hgvs.dataproviders.interface.Interface
method), 50

get_tx_for_gene()
(hgvs.dataproviders.uta.UTABase method),
52

get_tx_for_region()
(hgvs.dataproviders.interface.Interface
method), 50

get_tx_for_region()
(hgvs.dataproviders.uta.UTABase method),
52

get_tx_identity_info()
(hgvs.dataproviders.interface.Interface
method), 50

get_tx_identity_info()
(hgvs.dataproviders.uta.UTABase method),
52

get_tx_info() (hgvs.dataproviders.interface.Interface
method), 50

get_tx_info() (hgvs.dataproviders.uta.UTABase
method), 52

get_tx_mapping_options()
(hgvs.dataproviders.interface.Interface

100 Index

HGVS, Release 1.4.0

method), 50
get_tx_mapping_options()

(hgvs.dataproviders.uta.UTABase method),
53

H
hgvs (module), 33
hgvs.alignmentmapper (module), 48
hgvs.assemblymapper (module), 42
hgvs.config (module), 33
hgvs.config.global_config (in module

hgvs.config), 33
hgvs.dataproviders.interface (module), 50
hgvs.dataproviders.uta (module), 51
hgvs.edit (module), 34
hgvs.hgvsposition (module), 37
hgvs.location (module), 38
hgvs.normalizer (module), 49
hgvs.parser (module), 41
hgvs.posedit (module), 40
hgvs.projector (module), 47
hgvs.sequencevariant (module), 40
hgvs.validator (module), 49
hgvs.variantmapper (module), 44
HGVSPosition (class in hgvs.hgvsposition), 37

I
init_met (hgvs.edit.AARefAlt attribute), 35
Interface (class in hgvs.dataproviders.interface), 50
interface_version()

(hgvs.dataproviders.interface.Interface
method), 50

Interval (class in hgvs.location), 39
IntrinsicValidator (class in hgvs.validator), 49
Inv (class in hgvs.edit), 36
is_coding_transcript

(hgvs.alignmentmapper.AlignmentMapper
attribute), 48

is_intronic (hgvs.location.BaseOffsetPosition at-
tribute), 39

is_uncertain (hgvs.location.AAPosition attribute),
38

is_uncertain (hgvs.location.BaseOffsetPosition at-
tribute), 39

is_uncertain (hgvs.location.Interval attribute), 39
is_uncertain (hgvs.location.SimplePosition at-

tribute), 39

L
length (hgvs.edit.AAExt attribute), 34
length (hgvs.edit.AAFs attribute), 35
length_change() (hgvs.posedit.PosEdit method), 40

M
max (hgvs.edit.Repeat attribute), 37
min (hgvs.edit.Repeat attribute), 37

N
n_to_c() (hgvs.alignmentmapper.AlignmentMapper

method), 48
n_to_c() (hgvs.assemblymapper.AssemblyMapper

method), 44
n_to_c() (hgvs.variantmapper.VariantMapper

method), 46
n_to_g() (hgvs.alignmentmapper.AlignmentMapper

method), 48
n_to_g() (hgvs.assemblymapper.AssemblyMapper

method), 44
n_to_g() (hgvs.variantmapper.VariantMapper

method), 46
NACopy (class in hgvs.edit), 36
NARefAlt (class in hgvs.edit), 36
normalize() (hgvs.normalizer.Normalizer method),

50
Normalizer (class in hgvs.normalizer), 49

O
offset (hgvs.location.BaseOffsetPosition attribute), 39

P
parse() (hgvs.parser.Parser method), 42
Parser (class in hgvs.parser), 41
ParseResult (class in hgvs.dataproviders.uta), 51
pos (hgvs.hgvsposition.HGVSPosition attribute), 38
pos (hgvs.location.AAPosition attribute), 38
pos (hgvs.posedit.PosEdit attribute), 40
PosEdit (class in hgvs.posedit), 40
posedit (hgvs.sequencevariant.SequenceVariant at-

tribute), 41
project_interval_backward()

(hgvs.projector.Projector method), 47
project_interval_forward()

(hgvs.projector.Projector method), 47
project_variant_backward()

(hgvs.projector.Projector method), 47
project_variant_forward()

(hgvs.projector.Projector method), 48
Projector (class in hgvs.projector), 47

R
read_stream() (hgvs.config.Config method), 34
ref (hgvs.edit.AAExt attribute), 34
ref (hgvs.edit.AAFs attribute), 35
ref (hgvs.edit.AARefAlt attribute), 35
ref (hgvs.edit.Dup attribute), 36
ref (hgvs.edit.Inv attribute), 36

Index 101

HGVS, Release 1.4.0

ref (hgvs.edit.NARefAlt attribute), 37
ref (hgvs.edit.Repeat attribute), 37
ref_n (hgvs.edit.Inv attribute), 36
ref_n (hgvs.edit.NARefAlt attribute), 37
ref_pos (hgvs.alignmentmapper.AlignmentMapper at-

tribute), 49
ref_s (hgvs.edit.Dup attribute), 36
ref_s (hgvs.edit.Inv attribute), 36
ref_s (hgvs.edit.NARefAlt attribute), 37
relevant_transcripts()

(hgvs.assemblymapper.AssemblyMapper
method), 44

Repeat (class in hgvs.edit), 37
required_version (hgvs.dataproviders.interface.Interface

attribute), 50
required_version (hgvs.dataproviders.uta.UTABase

attribute), 53

S
schema (hgvs.dataproviders.uta.ParseResult attribute),

51
schema_version() (hgvs.dataproviders.interface.Interface

method), 50
schema_version() (hgvs.dataproviders.uta.UTABase

method), 53
SequenceVariant (class in hgvs.sequencevariant),

40
SimplePosition (class in hgvs.location), 39
start (hgvs.location.Interval attribute), 39
strand (hgvs.alignmentmapper.AlignmentMapper at-

tribute), 49

T
t_to_g() (hgvs.assemblymapper.AssemblyMapper

method), 44
t_to_g() (hgvs.variantmapper.VariantMapper

method), 47
t_to_p() (hgvs.assemblymapper.AssemblyMapper

method), 44
tgt_len (hgvs.alignmentmapper.AlignmentMapper at-

tribute), 49
tgt_pos (hgvs.alignmentmapper.AlignmentMapper at-

tribute), 49
tx_ac (hgvs.alignmentmapper.AlignmentMapper

attribute), 49
type (hgvs.edit.AAExt attribute), 34
type (hgvs.edit.AAFs attribute), 35
type (hgvs.edit.AARefAlt attribute), 35
type (hgvs.edit.AASub attribute), 35
type (hgvs.edit.Conv attribute), 35
type (hgvs.edit.Dup attribute), 36
type (hgvs.edit.Inv attribute), 36
type (hgvs.edit.NACopy attribute), 36
type (hgvs.edit.NARefAlt attribute), 37

type (hgvs.edit.Repeat attribute), 37
type (hgvs.hgvsposition.HGVSPosition attribute), 38
type (hgvs.sequencevariant.SequenceVariant attribute),

41

U
uncertain (hgvs.edit.AAExt attribute), 34
uncertain (hgvs.edit.AAFs attribute), 35
uncertain (hgvs.edit.AARefAlt attribute), 35
uncertain (hgvs.edit.Conv attribute), 35
uncertain (hgvs.edit.Dup attribute), 36
uncertain (hgvs.edit.Inv attribute), 36
uncertain (hgvs.edit.NACopy attribute), 36
uncertain (hgvs.edit.NARefAlt attribute), 37
uncertain (hgvs.edit.Repeat attribute), 37
uncertain (hgvs.location.AAPosition attribute), 38
uncertain (hgvs.location.BaseOffsetPosition at-

tribute), 39
uncertain (hgvs.location.Interval attribute), 39
uncertain (hgvs.location.SimplePosition attribute), 39
uncertain (hgvs.posedit.PosEdit attribute), 40
UTA_postgresql (class in hgvs.dataproviders.uta),

53
UTABase (class in hgvs.dataproviders.uta), 51

V
validate() (hgvs.location.AAPosition method), 38
validate() (hgvs.location.BaseOffsetPosition

method), 39
validate() (hgvs.location.Interval method), 39
validate() (hgvs.location.SimplePosition method),

39
validate() (hgvs.posedit.PosEdit method), 40
validate() (hgvs.sequencevariant.SequenceVariant

method), 41
validate() (hgvs.validator.ExtrinsicValidator

method), 49
validate() (hgvs.validator.IntrinsicValidator

method), 49
validate() (hgvs.validator.Validator method), 49
Validator (class in hgvs.validator), 49
VariantMapper (class in hgvs.variantmapper), 44

102 Index

	Contents
	Introduction
	Quick Start
	Installing hgvs
	Key Concepts
	Examples
	Reference Manual
	Privacy Issues
	Contributing
	Getting Help
	Frequently Asked Questions
	Change Log
	License

	Indices and tables
	Python Module Index
	Index

